cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A010026 Triangle read by rows: number of permutations of 1..n by length of longest run.

Original entry on oeis.org

2, 2, 4, 2, 12, 10, 2, 16, 70, 32, 2, 20, 134, 442, 122, 2, 24, 198, 1164, 3108, 544, 2, 28, 274, 2048, 10982, 24216, 2770, 2, 32, 362, 3204, 22468, 112354, 208586, 15872, 2, 36, 462, 4720, 39420, 264538, 1245676, 1972904, 101042
Offset: 2

Views

Author

Keywords

Examples

			Triangle begins:
  2,
  2,  4,
  2, 12,  10,
  2, 16,  70,   32,
  2, 20, 134,  442,   122,
  2, 24, 198, 1164,  3108,    544,
  2, 28, 274, 2048, 10982,  24216,   2770,
  2, 32, 362, 3204, 22468, 112354, 208586, 15872, ...
The row "2, 12, 10" for example means that there are two permutations of [1..4] in which the longest run up or down has length 4, 12 in which the longest run has length 3, and 10 in which the longest run has length 2.
The following table, computed by _Sean A. Irvine_, May 02 2012, gives an extended version of the triangle, oriented the right way round (cf. A211318), and corrects errors in David Kendall and Barton:
n l=0, l=1, l=2, l=3, etc.
----------------------------
1 [0, 1]
2 [0, 0, 2]
3 [0, 0, 4, 2]
4 [0, 0, 10, 12, 2]
5 [0, 0, 32, 70, 16, 2]
6 [0, 0, 122, 442, 134, 20, 2]
7 [0, 0, 544, 3108, 1164, 198, 24, 2]
8 [0, 0, 2770, 24216, 10982, 2048, 274, 28, 2]A049293
9 [0, 0, 15872, 208586, 112354, 22468, 3204, 362, 32, 2]
10 [0, 0, 101042, 1972904, 1245676, 264538, 39420, 4720, 462, 36, 2]
11 [0, 0, 707584, 20373338, 14909340, 3340962, 514296, 64020, 6644, 574, 40, 2]
12 [0, 0, 5405530, 228346522, 191916532, 45173518, 7137818, 913440, 98472, 9024, 698, 44, 2]
13 [0, 0, 44736512, 2763212980, 2646100822, 652209564, 105318770, 13760472, 1523808, 145080, 11908, 834, 48, 2]
14 [0, 0, 398721962, 35926266244, 38932850396, 10024669626, 1649355338, 219040274, 24744720, 2419872, 206388, 15344, 982, 52, 2]
15 [0, 0, 3807514624, 499676669254, 609137502242, 163546399460, 27356466626, 3681354658, 422335056, 42129360, 3690960, 285180, 19380, 1142, 56, 2]
		

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 262. (Probably contains errors for n >= 13.)

Crossrefs

Programs

  • Mathematica
    (* This program is unsuited for a large number of terms *) f[p_List] := Max[Length /@ Split[Differences[p], #1*#2 > 0 &]] + 1; row[n_] := Sort[Tally[f /@ Permutations[Range[n]]], First[#1] > First[#2] &][[All, 2]]; Table[rn = row[n]; Print["n = ", n, " ", rn]; rn, {n, 2, 10}] // Flatten (* Jean-François Alcover, Mar 12 2014 *)
    T[n_, length_] := Module[{g, b},
    g[u_, o_, t_] := g[u, o, t] = If[u+o == 0, 1, Sum[g[o + j - 1, u - j, 2], {j, 1, u}] + If[tJean-François Alcover, Aug 18 2018, after Alois P. Heinz *)

Extensions

Edited by N. J. A. Sloane, May 02 2012

A211318 Triangle read by rows: number of permutations of 1..n by length l of longest run (n >= 1, 1 <= l <= n).

Original entry on oeis.org

1, 0, 2, 0, 4, 2, 0, 10, 12, 2, 0, 32, 70, 16, 2, 0, 122, 442, 134, 20, 2, 0, 544, 3108, 1164, 198, 24, 2, 0, 2770, 24216, 10982, 2048, 274, 28, 2, 0, 15872, 208586, 112354, 22468, 3204, 362, 32, 2, 0, 101042, 1972904, 1245676, 264538, 39420, 4720, 462, 36, 2, 0
Offset: 1

Views

Author

N. J. A. Sloane, May 02 2012, based on computations by Sean A. Irvine

Keywords

Examples

			Triangle begins:
n l=1, l=2, l=3, etc...
1 [1]
2 [0, 2]
3 [0, 4, 2]
4 [0, 10, 12, 2]
5 [0, 32, 70, 16, 2]
6 [0, 122, 442, 134, 20, 2]
7 [0, 544, 3108, 1164, 198, 24, 2]
8 [0, 2770, 24216, 10982, 2048, 274, 28, 2]
9 [0, 15872, 208586, 112354, 22468, 3204, 362, 32, 2]
10 [0, 101042, 1972904, 1245676, 264538, 39420, 4720, 462, 36, 2]
11 [0, 707584, 20373338, 14909340, 3340962, 514296, 64020, 6644, 574, 40, 2]
12 [0, 5405530, 228346522, 191916532, 45173518, 7137818, 913440, 98472, 9024, 698, 44, 2]
13 [0, 44736512, 2763212980, 2646100822, 652209564, 105318770, 13760472, 1523808, 145080, 11908, 834, 48, 2]
14 [0, 398721962, 35926266244, 38932850396, 10024669626, 1649355338, 219040274, 24744720, 2419872, 206388, 15344, 982, 52, 2]
15 [0, 3807514624, 499676669254, 609137502242, 163546399460, 27356466626, 3681354658, 422335056, 42129360, 3690960, 285180, 19380, 1142, 56, 2],
...
More rows than usual are shown, in order to correct errors in David, Kendall and Barton.
		

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 262. (Contains errors for n >= 13.)
  • Sean A. Irvine, Posting to Sequence Fans Mailing List, May 02 2012

Crossrefs

Mirror image of triangle in A010026.

Programs

  • Mathematica
    <Wouter Meeussen, May 09 2012 *)
    T[n_, length_] := Module[{g, b},
    g[u_, o_, t_] := g[u, o, t] = If[u+o == 0, 1, Sum[g[o + j - 1, u - j, 2], {j, 1, u}] + If[t1, 1] = 0;
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Aug 18 2018, after Alois P. Heinz *)
Showing 1-2 of 2 results.