cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230137 a(n)/2^n is the expected value of the maximum of the number of heads and the number of tails when n fair coins are tossed.

Original entry on oeis.org

0, 2, 6, 18, 44, 110, 252, 588, 1304, 2934, 6380, 14036, 30120, 65260, 138712, 297240, 627248, 1332902, 2796876, 5904516, 12333320, 25899972, 53897096, 112693928, 233776464, 487034300, 1007623032, 2092755528, 4319728784, 8948009624, 18432890160, 38094639664
Offset: 0

Views

Author

Geoffrey Critzer, Oct 10 2013

Keywords

Examples

			a(2) = 6 because there are four possible events when 2 coins are tossed: HH, HT, TH, TT.  The maximum of the number of heads and number of tails is respectively: 2 + 1 + 1 + 2 = 6.
		

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, n*(1+n),
           2*n/(n-1)*a(n-1) +4*(n-3)/(n-2)*a(n-2) -8*a(n-3))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Oct 10 2013
  • Mathematica
    nn=15;even=Table[n 2^(2n)+n Binomial[2n,n],{n,0,nn}];odd=Table[2Sum[ Binomial[2n+1,k]k,{k,n+1,2n+1}],{n,0,nn}];Riffle[even,odd]

Formula

a(2n) = 2*Sum_{k=n+1..2n} binomial(2n,k)*k + binomial(2n,n)*n.
a(2n+1) = 2*Sum_{k=n+1..2n+1} binomial(2n+1,k)*k.
a(n) = 2*n/(n-1)*a(n-1) +4*(n-3)/(n-2)*a(n-2) -8*a(n-3) for n>2, else a(n) = n*(1+n). - Alois P. Heinz, Oct 10 2013
From Vaclav Kotesovec, Jul 20 2019: (Start)
a(2*n) = (4^n + binomial(2*n,n))*n.
a(2*n+1) = (4^n + binomial(2*n,n))*(2*n+1). (End)