A230212
Trapezoid of dot products of row 9 (signs alternating) with sequential 10-tuples read by rows in Pascal's triangle A007318: T(n,k) is the linear combination of the 10-tuples (C(9,0), -C(9,1), ..., C(9,8), -C(9,9)) and (C(n-1,k-9), C(n-1,k-8), ..., C(n-1,k)), n >= 1, 0 <= k <= n+8.
Original entry on oeis.org
-1, 9, -36, 84, -126, 126, -84, 36, -9, 1, -1, 8, -27, 48, -42, 0, 42, -48, 27, -8, 1, -1, 7, -19, 21, 6, -42, 42, -6, -21, 19, -7, 1, -1, 6, -12, 2, 27, -36, 0, 36, -27, -2, 12, -6, 1, -1, 5, -6, -10, 29, -9, -36, 36, 9, -29, 10, 6, -5, 1, -1, 4, -1, -16
Offset: 1
Trapezoid begins:
-1, 9, -36, 84, -126, 126, -84, 36, -9, 1;
-1, 8, -27, 48, -42, 0, 42, -48, 27, -8, 1;
-1, 7, -19, 21, 6, -42, 42, -6, -21, 19, -7, 1;
-1, 6, -12, 2, 27, -36, 0, 36, -27, -2, 12, -6, 1;
-1, 5, -6, -10, 29, -9, -36, 36, 9, -29, 10, 6, -5, 1;
-1, 4, -1, -16, 19, 20, -45, 0, 45, -20, -19, 16, 1, -4, 1;
-1, 3, 3, -17, 3, 39, -25, -45, 45, 25, -39, -3, 17, -3, -3, 1;
etc.
-
m:=9; [[k le 0 select (-1 )^m else (&+[(-1)^(j+m)* Binomial(m,j) *Binomial(n-1,k-j): j in [0..(n+m-1)]]): k in [0..(n+m-1)]]: n in [1..10]]; // G. C. Greubel, Nov 28 2018
-
Flatten[Table[CoefficientList[(x - 1)^9 (x + 1)^n, x], {n, 0, 7}]] (* T. D. Noe, Oct 25 2013 *)
m=9; Table[If[k == 0, (-1)^m, Sum[(-1)^(j+m)*Binomial[m, j]*Binomial[n-1, k-j], {j, 0, n+m-1}]], {n, 1, 10}, {k, 0, n+m-1}]//Flatten (* G. C. Greubel, Nov 28 2018 *)
-
m=9; for(n=1, 10, for(k=0, n+m-1, print1(if(k==0, (-1)^m, sum(j=0, n+m-1, (-1)^(j+m)*binomial(m,j)*binomial(n-1,k-j))), ", "))) \\ G. C. Greubel, Nov 28 2018
-
m=9; [[sum((-1)^(j+m)*binomial(m,j)*binomial(n-1,k-j) for j in range(n+m)) for k in range(n+m)] for n in (1..10)] # G. C. Greubel, Nov 28 2018
A230207
Trapezoid of dot products of row 4 (signs alternating) with sequential 5-tuples read by rows in Pascal's triangle A007318: T(n,k) is the linear combination of the 5-tuples (C(4,0), -C(4,1), C(4,2), -C(4,3), C(4,4)) and (C(n-1,k-4), C(n-1,k-3), C(n-1,k-2), C(n-1,k-1), C(n-1,k)), n >= 1, 0 <= k <= n+3.
Original entry on oeis.org
1, -4, 6, -4, 1, 1, -3, 2, 2, -3, 1, 1, -2, -1, 4, -1, -2, 1, 1, -1, -3, 3, 3, -3, -1, 1, 1, 0, -4, 0, 6, 0, -4, 0, 1, 1, 1, -4, -4, 6, 6, -4, -4, 1, 1, 1, 2, -3, -8, 2, 12, 2, -8, -3, 2, 1, 1, 3, -1, -11, -6, 14, 14, -6, -11, -1, 3, 1, 1, 4, 2, -12, -17, 8
Offset: 1
Trapezoid begins:
1, -4, 6, -4, 1;
1, -3, 2, 2, -3, 1;
1, -2, -1, 4, -1, -2, 1;
1, -1, -3, 3, 3, -3, -1, 1;
1, 0, -4, 0, 6, 0, -4, 0, 1;
1, 1, -4, -4, 6, 6, -4, -4, 1, 1;
1, 2, -3, -8, 2, 12, 2, -8, -3, 2, 1;
etc.
-
m:=4; [[k le 0 select (-1 )^m else (&+[(-1)^(j+m)* Binomial(m,j) *Binomial(n-1,k-j): j in [0..(n+m-1)]]): k in [0..(n+m-1)]]: n in [1..10]]; // G. C. Greubel, Nov 29 2018
-
Flatten[Table[CoefficientList[(x - 1)^4 (x + 1)^n, x], {n, 0, 7}]] (* T. D. Noe, Oct 25 2013 *)
m=4; Table[If[k == 0, (-1)^m, Sum[(-1)^(j+m)*Binomial[m, j]*Binomial[n-1, k-j], {j, 0, n+m-1}]], {n, 1, 10}, {k, 0, n+m-1}]//Flatten (* G. C. Greubel, Nov 29 2018 *)
-
m=4; for(n=1, 10, for(k=0, n+m-1, print1(if(k==0, (-1)^m, sum(j=0, n+m-1, (-1)^(j+m)*binomial(m,j)*binomial(n-1,k-j))), ", "))) \\ G. C. Greubel, Nov 29 2018
-
m=4; [[sum((-1)^(j+m)*binomial(m,j)*binomial(n-1,k-j) for j in range(n+m)) for k in range(n+m)] for n in (1..10)] # G. C. Greubel, Nov 29 2018
A230208
Trapezoid of dot products of row 5 (signs alternating) with sequential 6-tuples read by rows in Pascal's triangle A007318: T(n,k) is the linear combination of the 6-tuples (C(5,0), -C(5,1), ..., -C(5,5)) and (C(n-1,k-5), C(n-1,k-4), ..., C(n-1,k)), n >= 1, 0 <= k <= n+4.
Original entry on oeis.org
-1, 5, -10, 10, -5, 1, -1, 4, -5, 0, 5, -4, 1, -1, 3, -1, -5, 5, 1, -3, 1, -1, 2, 2, -6, 0, 6, -2, -2, 1, -1, 1, 4, -4, -6, 6, 4, -4, -1, 1, -1, 0, 5, 0, -10, 0, 10, 0, -5, 0, 1, -1, -1, 5, 5, -10, -10, 10, 10, -5, -5, 1, 1, -1, -2, 4, 10, -5, -20, 0, 20, 5
Offset: 1
Trapezoid begins:
-1, 5, -10, 10, -5, 1;
-1, 4, -5, 0, 5, -4, 1;
-1, 3, -1, -5, 5, 1, -3, 1;
-1, 2, 2, -6, 0, 6, -2, -2, 1;
-1, 1, 4, -4, -6, 6, 4, -4, -1, 1;
-1, 0, 5, 0, -10, 0, 10, 0, -5, 0, 1;
-1, -1, 5, 5, -10, -10, 10, 10, -5, -5, 1, 1;
etc.
-
m:=5; [[k le 0 select (-1 )^m else (&+[(-1)^(j+m)* Binomial(m,j) *Binomial(n-1,k-j): j in [0..(n+m-1)]]): k in [0..(n+m-1)]]: n in [1..10]]; // G. C. Greubel, Nov 29 2018
-
Flatten[Table[CoefficientList[(x - 1)^5 (x + 1)^n, x], {n, 0, 7}]] (* T. D. Noe, Oct 25 2013 *)
m=5; Table[If[k == 0, (-1)^m, Sum[(-1)^(j+m)*Binomial[m, j]*Binomial[n-1, k-j], {j, 0, n+m-1}]], {n, 1, 10}, {k, 0, n+m-1}]//Flatten (* G. C. Greubel, Nov 29 2018 *)
-
m=5; for(n=1, 10, for(k=0, n+m-1, print1(if(k==0, (-1)^m, sum(j=0, n+m-1, (-1)^(j+m)*binomial(m,j)*binomial(n-1,k-j))), ", "))) \\ G. C. Greubel, Nov 29 2018
-
m=5; [[sum((-1)^(j+m)*binomial(m,j)*binomial(n-1,k-j) for j in range(n+m)) for k in range(n+m)] for n in (1..10)] # G. C. Greubel, Nov 29 2018
A230209
Trapezoid of dot products of row 6 (signs alternating) with sequential 7-tuples read by rows in Pascal's triangle A007318: T(n,k) is the linear combination of the 7-tuples (C(6,0), -C(6,1), ..., -C(6,5), C(6,6)) and (C(n-1,k-6), C(n-1,k-5), ..., C(n-1,k)), n >= 1, 0 <= k <= n+5.
Original entry on oeis.org
1, -6, 15, -20, 15, -6, 1, 1, -5, 9, -5, -5, 9, -5, 1, 1, -4, 4, 4, -10, 4, 4, -4, 1, 1, -3, 0, 8, -6, -6, 8, 0, -3, 1, 1, -2, -3, 8, 2, -12, 2, 8, -3, -2, 1, 1, -1, -5, 5, 10, -10, -10, 10, 5, -5, -1, 1, 1, 0, -6, 0, 15, 0, -20, 0, 15, 0, -6, 0, 1, 1, 1, -6
Offset: 1
Trapezoid begins:
1, -6, 15, -20, 15, -6, 1;
1, -5, 9, -5, -5, 9, -5, 1;
1, -4, 4, 4, -10, 4, 4, -4, 1;
1, -3, 0, 8, -6, -6, 8, 0, -3, 1;
1, -2, -3, 8, 2, -12, 2, 8, -3, -2, 1;
1, -1, -5, 5, 10, -10, -10, 10, 5, -5, -1, 1;
1, 0, -6, 0, 15, 0, -20, 0, 15, 0, -6, 0, 1;
etc.
-
m:=6; [[k le 0 select (-1 )^m else (&+[(-1)^(j+m)* Binomial(m,j) *Binomial(n-1,k-j): j in [0..(n+m-1)]]): k in [0..(n+m-1)]]: n in [1..10]]; // G. C. Greubel, Nov 28 2018
-
Flatten[Table[CoefficientList[(x - 1)^6 (x + 1)^n, x], {n, 0, 7}]] (* T. D. Noe, Oct 25 2013 *)
m=6; Table[If[k == 0, (-1)^m, Sum[(-1)^(j+m)*Binomial[m, j]*Binomial[n-1, k-j], {j, 0, n+m-1}]], {n, 1, 10}, {k, 0, n+m-1}]//Flatten (* G. C. Greubel, Nov 28 2018 *)
-
m=6; for(n=1, 10, for(k=0, n+m-1, print1(if(k==0, (-1)^m, sum(j=0, n+m-1, (-1)^(j+m)*binomial(m,j)*binomial(n-1,k-j))), ", "))) \\ G. C. Greubel, Nov 28 2018
-
m=6; [[sum((-1)^(j+m)*binomial(m,j)*binomial(n-1,k-j) for j in range(n+m)) for k in range(n+m)] for n in (1..10)] # G. C. Greubel, Nov 28 2018
A230210
Trapezoid of dot products of row 7 (signs alternating) with sequential 8-tuples read by rows in Pascal's triangle A007318: T(n,k) is the linear combination of the 8-tuples (C(7,0), -C(7,1), ..., C(7,6), -C(7,7)) and (C(n-1,k-7), C(n-1,k-6), ..., C(n-1,k)), n >= 1, 0 <= k <= n+6.
Original entry on oeis.org
-1, 7, -21, 35, -35, 21, -7, 1, -1, 6, -14, 14, 0, -14, 14, -6, 1, -1, 5, -8, 0, 14, -14, 0, 8, -5, 1, -1, 4, -3, -8, 14, 0, -14, 8, 3, -4, 1, -1, 3, 1, -11, 6, 14, -14, -6, 11, -1, -3, 1, -1, 2, 4, -10, -5, 20, 0, -20, 5, 10, -4, -2, 1, -1, 1, 6, -6, -15
Offset: 1
Trapezoid begins:
-1, 7, -21, 35, -35, 21, -7, 1;
-1, 6, -14, 14, 0, -14, 14, -6, 1;
-1, 5, -8, 0, 14, -14, 0, 8, -5, 1;
-1, 4, -3, -8, 14, 0, -14, 8, 3, -4, 1;
-1, 3, 1, -11, 6, 14, -14, -6, 11, -1, -3, 1;
-1, 2, 4, -10, -5, 20, 0, -20, 5, 10, -4, -2, 1;
-1, 1, 6, -6, -15, 15, 20, -20, -15, 15, 6, -6, -1, 1;
etc.
-
m:=7; [[k le 0 select (-1 )^m else (&+[(-1)^(j+m)* Binomial(m,j) *Binomial(n-1,k-j): j in [0..(n+m-1)]]): k in [0..(n+m-1)]]: n in [1..10]]; // G. C. Greubel, Nov 28 2018
-
Flatten[Table[CoefficientList[(x - 1)^7 (x + 1)^n, x], {n, 0, 7}]] (* T. D. Noe, Oct 25 2013 *)
m=7; Table[If[k == 0, (-1)^m, Sum[(-1)^(j+m)*Binomial[m, j]*Binomial[n-1, k-j], {j, 0, n+m-1}]], {n, 1, 10}, {k, 0, n+m-1}]//Flatten (* G. C. Greubel, Nov 28 2018 *)
-
m=7; for(n=1, 10, for(k=0, n+m-1, print1(if(k==0, (-1)^m, sum(j=0, n+m-1, (-1)^(j+m)*binomial(m,j)*binomial(n-1,k-j))), ", "))) \\ G. C. Greubel, Nov 28 2018
-
m=7; [[sum((-1)^(j+m)*binomial(m,j)*binomial(n-1,k-j) for j in range(n+m)) for k in range(n+m)] for n in (1..10)] # G. C. Greubel, Nov 28 2018
A230211
Trapezoid of dot products of row 8 (signs alternating) with sequential 9-tuples read by rows in Pascal's triangle A007318: T(n,k) is the linear combination of the 9-tuples (C(8,0), -C(8,1), ..., -C(8,7), C(8,8)) and (C(n-1,k-8), C(n-1,k-7), ..., C(n-1,k)), n >= 1, 0 <= k <= n+7.
Original entry on oeis.org
1, -8, 28, -56, 70, -56, 28, -8, 1, 1, -7, 20, -28, 14, 14, -28, 20, -7, 1, 1, -6, 13, -8, -14, 28, -14, -8, 13, -6, 1, 1, -5, 7, 5, -22, 14, 14, -22, 5, 7, -5, 1, 1, -4, 2, 12, -17, -8, 28, -8, -17, 12, 2, -4, 1, 1, -3, -2, 14, -5, -25, 20, 20, -25, -5, 14
Offset: 1
Trapezoid begins:
1, -8, 28, -56, 70, -56, 28, -8, 1;
1, -7, 20, -28, 14, 14, -28, 20, -7, 1;
1, -6, 13, -8, -14, 28, -14, -8, 13, -6, 1;
1, -5, 7, 5, -22, 14, 14, -22, 5, 7, -5, 1;
1, -4, 2, 12, -17, -8, 28, -8, -17, 12, 2, -4, 1;
1, -3, -2, 14, -5, -25, 20, 20, -25, -5, 14, -2, -3, 1;
1, -2, -5, 12, 9, -30, -5, 40, -5, -30, 9, 12, -5, -2, 1;
etc.
-
m:=8; [[k le 0 select (-1 )^m else (&+[(-1)^(j+m)* Binomial(m,j) *Binomial(n-1,k-j): j in [0..(n+m-1)]]): k in [0..(n+m-1)]]: n in [1..10]]; // G. C. Greubel, Nov 28 2018
-
Flatten[Table[CoefficientList[(x - 1)^8 (x + 1)^n, x], {n, 0, 7}]] (* T. D. Noe, Oct 25 2013 *)
m=8; Table[If[k == 0, (-1)^m, Sum[(-1)^(j+m)*Binomial[m, j]*Binomial[n-1, k-j], {j, 0, n+m-1}]], {n, 1, 10}, {k, 0, n+m-1}]//Flatten (* G. C. Greubel, Nov 28 2018 *)
-
m=8; for(n=1, 10, for(k=0, n+m-1, print1(if(k==0, (-1)^m, sum(j=0, n+m-1, (-1)^(j+m)*binomial(m,j)*binomial(n-1,k-j))), ", "))) \\ G. C. Greubel, Nov 28 2018
-
m=8; [[sum((-1)^(j+m)*binomial(m,j)*binomial(n-1,k-j) for j in range(n+m)) for k in range(n+m)] for n in (1..10)] # G. C. Greubel, Nov 28 2018
Showing 1-6 of 6 results.
Comments