cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A230230 Number of ways to write 2*n = p + q with p, q, 3*p - 10, 3*q + 10 all prime.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 4, 3, 3, 5, 1, 5, 5, 3, 4, 5, 3, 2, 6, 4, 3, 6, 3, 3, 6, 3, 5, 6, 3, 6, 5, 4, 4, 9, 5, 4, 9, 5, 3, 9, 4, 4, 6, 4, 5, 6, 5, 5, 10, 4, 8, 10, 3, 7, 12, 3, 6, 11, 5, 7, 8, 3, 4, 6, 6, 4, 7, 2, 7, 9, 2, 10, 9, 3, 9, 8, 3, 5, 14, 8, 4, 12, 5, 5, 11, 5, 6, 8, 3, 8, 7, 4, 9, 11, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 12 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 3.
This is stronger than Goldbach's conjecture for even numbers. If 2*n = p + q with p, q, 3*p - 10, 3*q + 10 all prime, then 6*n is the sum of the two primes 3*p - 10 and 3*q + 10.
Conjecture verified for 2*n up to 10^9. - Mauro Fiorentini, Jul 08 2023

Examples

			a(5) = 1 since 2*5 = 7 + 3 with 3*7 - 10 = 11 and 3*3 + 10 = 19 both prime.
a(16) = 1 since 2*16 = 13 + 19 with 3*13 - 10 = 29 and 3*19 + 10 = 67 both prime.
		

Crossrefs

Programs

  • Mathematica
    PQ[n_]:=n>3&&PrimeQ[3n-10]
    SQ[n_]:=PrimeQ[n]&&PrimeQ[3n+10]
    a[n_]:=Sum[If[PQ[Prime[i]]&&SQ[2n-Prime[i]],1,0],{i,1,PrimePi[2n-2]}]
    Table[a[n],{n,1,100}]

A230241 Number of ways to write n = p + q with p, 3*p - 10 and (p-1)*q - 1 all prime, where q is a positive integer.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 2, 1, 2, 2, 1, 2, 3, 2, 2, 4, 1, 4, 5, 1, 6, 2, 3, 6, 3, 1, 2, 6, 2, 3, 7, 3, 6, 4, 2, 4, 2, 5, 6, 1, 2, 6, 5, 4, 6, 8, 3, 5, 10, 3, 6, 6, 2, 9, 4, 2, 4, 6, 3, 4, 11, 1, 6, 7, 2, 9, 7, 3, 5, 8, 5, 9, 6, 4, 3, 6, 3, 6, 4, 3, 10, 9, 2, 13, 2, 5, 8, 10, 3, 3, 11, 1, 10, 11, 3, 9, 4, 6, 11
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 13 2013

Keywords

Comments

Conjecture: a(n) > 0 for all n > 5.
This implies A. Murthy's conjecture mentioned in A109909.
We have verified the conjecture for n up to 10^8.
Conjecture verified for n up to 10^9. - Mauro Fiorentini, Jul 29 2023

Examples

			a(9) = 1 since 9 = 7 + 2 with 7, 3*7-10 = 11, (7-1)*2-1 = 11 all prime.
a(27) = 1 since 27 = 13 + 14, and the three numbers 13, 3*13-10 = 29, (13-1)*14-1 = 167 are prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[3Prime[i]-10]&&PrimeQ[(Prime[i]-1)(n-Prime[i])-1],1,0],{i,1,PrimePi[n-1]}]
    Table[a[n],{n,1,100}]

A274505 Primes p such that 3*p-10 and 3*p+10 are prime numbers.

Original entry on oeis.org

7, 11, 17, 19, 23, 31, 47, 61, 67, 89, 101, 107, 109, 137, 151, 163, 199, 283, 347, 353, 373, 397, 401, 409, 431, 439, 457, 479, 487, 523, 577, 607, 619, 641, 647, 661, 691, 761, 787, 809, 907, 929, 1033, 1087, 1103, 1153, 1201, 1229, 1307, 1319
Offset: 1

Views

Author

Vincenzo Librandi, Jun 30 2016

Keywords

Comments

Intersection of A023211 and A230227.

Examples

			7 is a term because 3*7-10 = 11 and 3*7+10 = 31 are primes.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(1500) |IsPrime(3*p-10) and IsPrime(3*p+10)];
  • Mathematica
    Select[Prime[Range[400]], PrimeQ[3 # - 10] && PrimeQ[3 # + 10] &]
Showing 1-3 of 3 results.