cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A230355 Nonsquarefree numbers n such that digit sum of n = digit sum of squarefree part of n.

Original entry on oeis.org

12, 24, 60, 100, 120, 132, 150, 156, 200, 204, 228, 240, 264, 276, 300, 320, 348, 372, 420, 500, 516, 552, 600, 624, 636, 660, 700, 708, 732, 744, 780, 912, 1000, 1014, 1050, 1056, 1068, 1092, 1100, 1128, 1164, 1200, 1212, 1216, 1236, 1248, 1272, 1300, 1308, 1320, 1356, 1380, 1392, 1400
Offset: 1

Views

Author

Antonio Roldán, Oct 16 2013

Keywords

Examples

			Squarefree part of 624=2^4*3*13 is 39. Digit_sum(624)=12, digit_sum(39)=12
		

Crossrefs

Programs

  • PARI
    digsum(n)={local (d, p); d=0; p=n; while(p, d+=p%10; p=floor(p/10)); return(d)}
    {for (n=4, 10^3,m=core(n);if(digsum(n)==digsum(m)&&m<>n,print(n)));}

A230356 Nonsquare numbers n such that digit sum of n = digit sum of square part of n.

Original entry on oeis.org

10, 18, 27, 40, 45, 54, 63, 72, 90, 108, 117, 126, 135, 153, 160, 162, 171, 180, 207, 216, 220, 234, 243, 250, 252, 261, 270, 304, 306, 315, 333, 342, 351, 360, 405, 414, 423, 432, 450, 490, 504, 513, 522, 531, 540, 603, 612, 621, 630, 640, 702, 711, 720, 801, 810, 931
Offset: 1

Views

Author

Antonio Roldán, Oct 16 2013

Keywords

Examples

			135 = 2^3*5. Square part of 135 is 9. Digit_sum(135) =9, digit_sum(9) = 9.
		

Crossrefs

Programs

  • PARI
    digsum(n)={local (d, p); d=0; p=n; while(p, d+=p%10; p=floor(p/10)); return(d)}
    {for (n=2, 10^3,m=n/core(n);if(digsum(n)==digsum(m)&&m<>n,print(n)));}

A230357 Numbers n such that digit sum of n equals digit sum of sopf(n) (sum of the distinct prime factors of n).

Original entry on oeis.org

22, 94, 105, 114, 136, 140, 160, 166, 202, 222, 234, 250, 265, 274, 346, 355, 361, 382, 424, 438, 445, 454, 516, 517, 526, 532, 562, 634, 702, 706, 712, 732, 812, 913, 915, 922, 1036, 1071, 1086, 1111, 1116, 1122, 1138, 1165, 1185, 1204, 1206, 1219, 1221, 1230, 1239, 1255, 1282, 1312, 1316, 1318, 1345, 1363, 1400, 1404, 1432, 1507, 1520, 1530, 1550
Offset: 1

Views

Author

Antonio Roldán, Oct 16 2013

Keywords

Examples

			166=2*83. Sopf(166)=85. Digit_sum(166)=13, digit_sum(85)=13.
		

Crossrefs

Programs

  • PARI
    sopf(n)= { local(f, s=0); f=factor(n); for(i=1, matsize(f)[1], s+=f[i, 1]); return(s) }
    digsum(n)={local (d, p); d=0; p=n; while(p, d+=p%10; p=floor(p/10)); return(d)}
    {for (n=4, 2*10^3,m=sopf(n);if(digsum(n)==digsum(m)&&m<>n,print(n)))}
Showing 1-3 of 3 results.