cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A230354 Even numbers n such that digit sum of n = digit sum of largest odd divisor of n.

Original entry on oeis.org

12, 18, 36, 54, 60, 72, 90, 108, 126, 132, 144, 156, 162, 180, 198, 204, 216, 228, 234, 240, 252, 270, 276, 306, 320, 324, 342, 348, 360, 372, 378, 396, 414, 420, 432, 450, 504, 516, 522, 540, 558, 594, 612, 624, 630, 636, 660, 702, 708, 720, 732, 738, 756, 774, 780, 792, 810, 900
Offset: 1

Views

Author

Antonio Roldán, Oct 16 2013

Keywords

Examples

			Largest odd divisor of 162 is 81. Digit_sum(162)=9, digit_sum(81)=9
		

Crossrefs

Programs

  • PARI
    mdi(n)= n / 2^valuation(n, 2)
    digsum(n)={local (d, p); d=0; p=n; while(p, d+=p%10; p=floor(p/10)); return(d)}
    {for (n=2, 10^3,m=mdi(n);if(digsum(n)==digsum(mdi(n))&&m<>n,print(n)));}

A230355 Nonsquarefree numbers n such that digit sum of n = digit sum of squarefree part of n.

Original entry on oeis.org

12, 24, 60, 100, 120, 132, 150, 156, 200, 204, 228, 240, 264, 276, 300, 320, 348, 372, 420, 500, 516, 552, 600, 624, 636, 660, 700, 708, 732, 744, 780, 912, 1000, 1014, 1050, 1056, 1068, 1092, 1100, 1128, 1164, 1200, 1212, 1216, 1236, 1248, 1272, 1300, 1308, 1320, 1356, 1380, 1392, 1400
Offset: 1

Views

Author

Antonio Roldán, Oct 16 2013

Keywords

Examples

			Squarefree part of 624=2^4*3*13 is 39. Digit_sum(624)=12, digit_sum(39)=12
		

Crossrefs

Programs

  • PARI
    digsum(n)={local (d, p); d=0; p=n; while(p, d+=p%10; p=floor(p/10)); return(d)}
    {for (n=4, 10^3,m=core(n);if(digsum(n)==digsum(m)&&m<>n,print(n)));}

A230356 Nonsquare numbers n such that digit sum of n = digit sum of square part of n.

Original entry on oeis.org

10, 18, 27, 40, 45, 54, 63, 72, 90, 108, 117, 126, 135, 153, 160, 162, 171, 180, 207, 216, 220, 234, 243, 250, 252, 261, 270, 304, 306, 315, 333, 342, 351, 360, 405, 414, 423, 432, 450, 490, 504, 513, 522, 531, 540, 603, 612, 621, 630, 640, 702, 711, 720, 801, 810, 931
Offset: 1

Views

Author

Antonio Roldán, Oct 16 2013

Keywords

Examples

			135 = 2^3*5. Square part of 135 is 9. Digit_sum(135) =9, digit_sum(9) = 9.
		

Crossrefs

Programs

  • PARI
    digsum(n)={local (d, p); d=0; p=n; while(p, d+=p%10; p=floor(p/10)); return(d)}
    {for (n=2, 10^3,m=n/core(n);if(digsum(n)==digsum(m)&&m<>n,print(n)));}
Showing 1-3 of 3 results.