cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230366 a(n) = Sum_{k=1..floor(n/2)} (k^2 mod n).

Original entry on oeis.org

0, 1, 1, 1, 5, 8, 7, 6, 12, 25, 22, 19, 39, 42, 35, 28, 68, 69, 76, 65, 91, 110, 92, 74, 125, 169, 144, 147, 203, 190, 186, 152, 242, 289, 245, 201, 333, 342, 286, 270, 410, 413, 430, 363, 420, 460, 423, 340, 490, 575, 578, 585, 689, 666, 605, 546, 760, 841
Offset: 1

Views

Author

Jon Perry, Oct 17 2013

Keywords

Comments

a(26) and a(27) are both squares. Conjecture: the number of n such that a(n) and a(n+1) are both squares is infinite.
a(p = prime) == 0 (mod p) for p > 3.

Crossrefs

Cf. A048153.

Programs

  • JavaScript
    for (i=1;i<50;i++) {
    c=0;
    for (j=1;j<=i/2;j++) c+=(j*j)%i;
    document.write(c+", ");
    }
    
  • Mathematica
    Table[Sum[Mod[k^2, n], {k, Floor[n/2]}], {n, 100}] (* T. D. Noe, Oct 22 2013 *)
    Table[Sum[PowerMod[k,2,n],{k,Floor[n/2]}],{n,100}] (* Harvey P. Dale, Jul 03 2022 *)
  • PARI
    a(n)=sum(i=1,floor(n/2),(i*i)%n) \\ Ralf Stephan, Oct 19 2013
    
  • Python
    def A230366(n): return sum(k**2%n for k in range(1,(n>>1)+1)) # Chai Wah Wu, Jun 02 2024