A230366 a(n) = Sum_{k=1..floor(n/2)} (k^2 mod n).
0, 1, 1, 1, 5, 8, 7, 6, 12, 25, 22, 19, 39, 42, 35, 28, 68, 69, 76, 65, 91, 110, 92, 74, 125, 169, 144, 147, 203, 190, 186, 152, 242, 289, 245, 201, 333, 342, 286, 270, 410, 413, 430, 363, 420, 460, 423, 340, 490, 575, 578, 585, 689, 666, 605, 546, 760, 841
Offset: 1
Keywords
Crossrefs
Cf. A048153.
Programs
-
JavaScript
for (i=1;i<50;i++) { c=0; for (j=1;j<=i/2;j++) c+=(j*j)%i; document.write(c+", "); }
-
Mathematica
Table[Sum[Mod[k^2, n], {k, Floor[n/2]}], {n, 100}] (* T. D. Noe, Oct 22 2013 *) Table[Sum[PowerMod[k,2,n],{k,Floor[n/2]}],{n,100}] (* Harvey P. Dale, Jul 03 2022 *)
-
PARI
a(n)=sum(i=1,floor(n/2),(i*i)%n) \\ Ralf Stephan, Oct 19 2013
-
Python
def A230366(n): return sum(k**2%n for k in range(1,(n>>1)+1)) # Chai Wah Wu, Jun 02 2024
Comments