A230419 Square array A(n,k) = difference of digit sums in factorial base representations (A007623) of n and k, n>=0, k>=0, read by antidiagonals; A(n,k) = A034968(n)-A034968(k).
0, 1, -1, 1, 0, -1, 2, 0, 0, -2, 2, 1, 0, -1, -2, 3, 1, 1, -1, -1, -3, 1, 2, 1, 0, -1, -2, -1, 2, 0, 2, 0, 0, -2, 0, -2, 2, 1, 0, 1, 0, -1, 0, -1, -2, 3, 1, 1, -1, 1, -1, 1, -1, -1, -3, 3, 2, 1, 0, -1, 0, 1, 0, -1, -2, -3, 4, 2, 2, 0, 0, -2, 2, 0, 0, -2, -2, -4
Offset: 0
Examples
The top left corner array is: 0, 1, 1, 2, 2, 3, 1, 2, 2, 3, 3, ... -1, 0, 0, 1, 1, 2, 0, 1, 1, 2, 2, ... -1, 0, 0, 1, 1, 2, 0, 1, 1, 2, 2, ... -2, -1, -1, 0, 0, 1, -1, 0, 0, 1, 1, ... -2, -1, -1, 0, 0, 1, -1, 0, 0, 1, 1, ... -3, -2, -2, -1, -1, 0, -2, -1, -1, 0, 0, ... -1, 0, 0, 1, 1, 2, 0, 1, 1, 2, 2, ... -2, -1, -1, 0, 0, 1, -1, 0, 0, 1, 1, ... -2, -1, -1, 0, 0, 1, -1, 0, 0, 1, 1, ... -3, -2, -2, -1, -1, 0, -2, -1, -1, 0, 0, ... -3, -2, -2, -1, -1, 0, -2, -1, -1, 0, 0, ... ...
Links
- Antti Karttunen, The first 121 antidiagonals of the table, flattened
Comments