cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A230415 Square array T(i,j) giving the number of differing digits in the factorial base representations of i and j, for i >= 0, j >= 0, read by antidiagonals.

Original entry on oeis.org

0, 1, 1, 1, 0, 1, 2, 2, 2, 2, 1, 1, 0, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 0, 1, 2, 1, 2, 3, 3, 3, 3, 1, 1, 3, 3, 3, 3, 2, 2, 1, 2, 2, 0, 2, 2, 1, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 2, 2, 3, 3, 1, 2, 2, 1, 2, 2, 0, 2, 2, 1, 2, 2, 1, 2, 2, 3, 3, 3, 3, 1, 1, 3, 3, 3, 3, 2, 2, 2, 1, 2, 2, 1, 2, 1, 0, 1, 2, 1, 2, 2, 1, 2
Offset: 0

Views

Author

Antti Karttunen, Nov 10 2013

Keywords

Comments

This table relates to the factorial base representation (A007623) in a somewhat similar way as A101080 relates to the binary system. See A231713 for another analog.

Examples

			The top left corner of this square array begins as:
0, 1, 1, 2, 1, 2, 1, 2, 2, 3, 2, ...
1, 0, 2, 1, 2, 1, 2, 1, 3, 2, 3, ...
1, 2, 0, 1, 1, 2, 2, 3, 1, 2, 2, ...
2, 1, 1, 0, 2, 1, 3, 2, 2, 1, 3, ...
1, 2, 1, 2, 0, 1, 2, 3, 2, 3, 1, ...
2, 1, 2, 1, 1, 0, 3, 2, 3, 2, 2, ...
1, 2, 2, 3, 2, 3, 0, 1, 1, 2, 1, ...
2, 1, 3, 2, 3, 2, 1, 0, 2, 1, 2, ...
2, 3, 1, 2, 2, 3, 1, 2, 0, 1, 1, ...
3, 2, 2, 1, 3, 2, 2, 1, 1, 0, 2, ...
2, 3, 2, 3, 1, 2, 1, 2, 1, 2, 0, ...
...
For example, T(1,2) = T(2,1) = 2 as 1 has factorial base representation '...0001' and 2 has factorial base representation '...0010', and they differ by their two least significant digits.
On the other hand, T(3,5) = T(5,3) = 1, as 3 has factorial base representation '...0011' and 5 has factorial base representation '...0021', and they differ only by their second rightmost digit.
Note that as A007623(6)='100' and A007623(10)='120', we have T(6,10) = T(10,6) = 1 (instead of 2 as in A231713, cf. also its Example section), as here we count only the number of differing digit positions, but ignore the magnitudes of their differences.
		

Crossrefs

The topmost row and the leftmost column: A060130.
Only the lower triangular region: A230417. Related arrays: A230419, A231713. Cf. also A101080, A084558, A230410.

Programs

  • Mathematica
    nn = 14; m = 1; While[m! < nn, m++]; m; Table[Function[w, Count[Subtract @@ Map[PadLeft[#, Max@ Map[Length, w]] &, w], k_ /; k != 0]]@ Map[IntegerDigits[#, MixedRadix[Reverse@ Range[2, m]]] &, {i - j, j}], {i, 0, nn}, {j, 0, i}] // Flatten (* Michael De Vlieger, Jun 27 2016, Version 10.2 *)
  • Scheme
    (define (A230415 n) (A230415bi (A025581 n) (A002262 n)))
    (define (A230415bi x y) (let loop ((x x) (y y) (i 2) (d 0)) (cond ((and (zero? x) (zero? y)) d) (else (loop (floor->exact (/ x i)) (floor->exact (/ y i)) (+ i 1) (+ d (if (= (modulo x i) (modulo y i)) 0 1)))))))

Formula

T(n,0) = T(0,n) = A060130(n).
Each entry T(i,j) <= A231713(i,j).

A231713 Square array A(i,j) = the sum of absolute values of digit differences in the matching positions of the factorial base representations of i and j, for i >= 0, j >= 0, read by antidiagonals.

Original entry on oeis.org

0, 1, 1, 1, 0, 1, 2, 2, 2, 2, 2, 1, 0, 1, 2, 3, 3, 1, 1, 3, 3, 1, 2, 1, 0, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 0, 1, 2, 1, 2, 3, 3, 3, 3, 1, 1, 3, 3, 3, 3, 3, 2, 1, 2, 3, 0, 3, 2, 1, 2, 3, 4, 4, 2, 2, 4, 4, 4, 4, 2, 2, 4, 4, 2, 3, 2, 1, 2, 3, 0, 3, 2, 1, 2, 3, 2, 3, 3, 3, 3, 3, 3, 1, 1, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2, 1, 2, 1, 0, 1, 2, 1, 2, 3, 2, 3
Offset: 0

Views

Author

Antti Karttunen, Nov 12 2013

Keywords

Comments

This table relates to the factorial base representation (A007623) in a similar way as A101080 relates to the binary system. See A230415 for another analog.

Examples

			The top left corner of this square array begins as:
0, 1, 1, 2, 2, 3, 1, 2, 2, 3, 3, ...
1, 0, 2, 1, 3, 2, 2, 1, 3, 2, 4, ...
1, 2, 0, 1, 1, 2, 2, 3, 1, 2, 2, ...
2, 1, 1, 0, 2, 1, 3, 2, 2, 1, 3, ...
2, 3, 1, 2, 0, 1, 3, 4, 2, 3, 1, ...
3, 2, 2, 1, 1, 0, 4, 3, 3, 2, 2, ...
1, 2, 2, 3, 3, 4, 0, 1, 1, 2, 2, ...
2, 1, 3, 2, 4, 3, 1, 0, 2, 1, 3, ...
2, 3, 1, 2, 2, 3, 1, 2, 0, 1, 1, ...
3, 2, 2, 1, 3, 2, 2, 1, 1, 0, 2, ...
3, 4, 2, 3, 1, 2, 2, 3, 1, 2, 0, ...
...
For example, A(1,2) = A(2,1) = 2 as 1 has factorial base representation '...0001' and 2 has factorial base representation '...0010', and adding the absolute values of the digit differences, we get 1+1 = 2.
On the other hand, A(3,5) = A(5,3) = 1, as 3 has factorial base representation '...0011' and 5 has factorial base representation '...0021', and they differ only by their second rightmost digit, the absolute value of difference being 1.
Note that as A007623(6)='100' and A007623(10)='120', we have A(6,10) = A(10,6) = 2.
		

Crossrefs

The topmost row and the leftmost column: A034968.
Only the lower triangular region: A231714. Related tables: A230415, A230419. Cf. also A101080, A231717.

Programs

  • Scheme
    (define (A231713 n) (A231713bi (A025581 n) (A002262 n)))
    (define (A231713bi x y) (let loop ((x x) (y y) (i 2) (d 0)) (cond ((and (zero? x) (zero? y)) d) (else (loop (floor->exact (/ x i)) (floor->exact (/ y i)) (+ i 1) (+ d (abs (- (modulo x i) (modulo y i)))))))))

Formula

Each entry A(i,j) >= A230415(i,j) and also each entry A(i,j) >= abs(A230419(i,j)).
Showing 1-2 of 2 results.