Original entry on oeis.org
0, 1, 2, 2, 3, 3, 3, 3, 1, 6, 3, 3, 3, 2, 1, 6, 2, 3, 1, 3, 5, 3, 1, 3, 6, 2, 2, 3, 10, 3, 3, 3, 2, 1, 6, 2, 3, 1, 3, 5, 3, 1, 3, 6, 2, 1, 3, 5, 5, 3, 10, 2, 3, 1, 3, 5, 3, 1, 3, 6, 2, 1, 2, 4, 2, 4, 5, 3, 3, 9, 3, 1, 3, 6, 2, 1, 2, 4, 2, 4, 5, 3, 2, 4, 3, 10
Offset: 0
A231718 gives the positions of ones.
A231714
Lower triangular region of A231713; A triangular table read by rows: T(n,k) = sum of absolute values of digit differences in the factorial base representations (A007623) of n and k, where (n, k) = (0,0), (1,0), (1,1), (2,0), (2,1), (2,2), ..., n >= 0 and (0 <= k <= n).
Original entry on oeis.org
0, 1, 0, 1, 2, 0, 2, 1, 1, 0, 2, 3, 1, 2, 0, 3, 2, 2, 1, 1, 0, 1, 2, 2, 3, 3, 4, 0, 2, 1, 3, 2, 4, 3, 1, 0, 2, 3, 1, 2, 2, 3, 1, 2, 0, 3, 2, 2, 1, 3, 2, 2, 1, 1, 0, 3, 4, 2, 3, 1, 2, 2, 3, 1, 2, 0, 4, 3, 3, 2, 2, 1, 3, 2, 2, 1, 1, 0, 2, 3, 3, 4, 4, 5, 1, 2, 2, 3, 3, 4, 0, 3, 2, 4, 3, 5, 4, 2, 1, 3, 2, 4, 3, 1, 0, 3, 4, 2, 3, 3, 4, 2, 3, 1, 2, 2, 3, 1, 2, 0
Offset: 0
This triangular table begins as:
0;
1, 0;
1, 2, 0;
2, 1, 1, 0;
2, 3, 1, 2, 0;
3, 2, 2, 1, 1, 0;
1, 2, 2, 3, 3, 4, 0;
2, 1, 3, 2, 4, 3, 1, 0;
...
Please see A231713 for examples how the terms are computed.
This is a lower, or equivalently, an upper triangular subregion of symmetric square array
A231713. Cf.
A230417.
A230415
Square array T(i,j) giving the number of differing digits in the factorial base representations of i and j, for i >= 0, j >= 0, read by antidiagonals.
Original entry on oeis.org
0, 1, 1, 1, 0, 1, 2, 2, 2, 2, 1, 1, 0, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 0, 1, 2, 1, 2, 3, 3, 3, 3, 1, 1, 3, 3, 3, 3, 2, 2, 1, 2, 2, 0, 2, 2, 1, 2, 2, 3, 3, 2, 2, 3, 3, 3, 3, 2, 2, 3, 3, 1, 2, 2, 1, 2, 2, 0, 2, 2, 1, 2, 2, 1, 2, 2, 3, 3, 3, 3, 1, 1, 3, 3, 3, 3, 2, 2, 2, 1, 2, 2, 1, 2, 1, 0, 1, 2, 1, 2, 2, 1, 2
Offset: 0
The top left corner of this square array begins as:
0, 1, 1, 2, 1, 2, 1, 2, 2, 3, 2, ...
1, 0, 2, 1, 2, 1, 2, 1, 3, 2, 3, ...
1, 2, 0, 1, 1, 2, 2, 3, 1, 2, 2, ...
2, 1, 1, 0, 2, 1, 3, 2, 2, 1, 3, ...
1, 2, 1, 2, 0, 1, 2, 3, 2, 3, 1, ...
2, 1, 2, 1, 1, 0, 3, 2, 3, 2, 2, ...
1, 2, 2, 3, 2, 3, 0, 1, 1, 2, 1, ...
2, 1, 3, 2, 3, 2, 1, 0, 2, 1, 2, ...
2, 3, 1, 2, 2, 3, 1, 2, 0, 1, 1, ...
3, 2, 2, 1, 3, 2, 2, 1, 1, 0, 2, ...
2, 3, 2, 3, 1, 2, 1, 2, 1, 2, 0, ...
...
For example, T(1,2) = T(2,1) = 2 as 1 has factorial base representation '...0001' and 2 has factorial base representation '...0010', and they differ by their two least significant digits.
On the other hand, T(3,5) = T(5,3) = 1, as 3 has factorial base representation '...0011' and 5 has factorial base representation '...0021', and they differ only by their second rightmost digit.
Note that as A007623(6)='100' and A007623(10)='120', we have T(6,10) = T(10,6) = 1 (instead of 2 as in A231713, cf. also its Example section), as here we count only the number of differing digit positions, but ignore the magnitudes of their differences.
The topmost row and the leftmost column:
A060130.
-
nn = 14; m = 1; While[m! < nn, m++]; m; Table[Function[w, Count[Subtract @@ Map[PadLeft[#, Max@ Map[Length, w]] &, w], k_ /; k != 0]]@ Map[IntegerDigits[#, MixedRadix[Reverse@ Range[2, m]]] &, {i - j, j}], {i, 0, nn}, {j, 0, i}] // Flatten (* Michael De Vlieger, Jun 27 2016, Version 10.2 *)
-
(define (A230415 n) (A230415bi (A025581 n) (A002262 n)))
(define (A230415bi x y) (let loop ((x x) (y y) (i 2) (d 0)) (cond ((and (zero? x) (zero? y)) d) (else (loop (floor->exact (/ x i)) (floor->exact (/ y i)) (+ i 1) (+ d (if (= (modulo x i) (modulo y i)) 0 1)))))))
A230419
Square array A(n,k) = difference of digit sums in factorial base representations (A007623) of n and k, n>=0, k>=0, read by antidiagonals; A(n,k) = A034968(n)-A034968(k).
Original entry on oeis.org
0, 1, -1, 1, 0, -1, 2, 0, 0, -2, 2, 1, 0, -1, -2, 3, 1, 1, -1, -1, -3, 1, 2, 1, 0, -1, -2, -1, 2, 0, 2, 0, 0, -2, 0, -2, 2, 1, 0, 1, 0, -1, 0, -1, -2, 3, 1, 1, -1, 1, -1, 1, -1, -1, -3, 3, 2, 1, 0, -1, 0, 1, 0, -1, -2, -3, 4, 2, 2, 0, 0, -2, 2, 0, 0, -2, -2, -4
Offset: 0
The top left corner array is:
0, 1, 1, 2, 2, 3, 1, 2, 2, 3, 3, ...
-1, 0, 0, 1, 1, 2, 0, 1, 1, 2, 2, ...
-1, 0, 0, 1, 1, 2, 0, 1, 1, 2, 2, ...
-2, -1, -1, 0, 0, 1, -1, 0, 0, 1, 1, ...
-2, -1, -1, 0, 0, 1, -1, 0, 0, 1, 1, ...
-3, -2, -2, -1, -1, 0, -2, -1, -1, 0, 0, ...
-1, 0, 0, 1, 1, 2, 0, 1, 1, 2, 2, ...
-2, -1, -1, 0, 0, 1, -1, 0, 0, 1, 1, ...
-2, -1, -1, 0, 0, 1, -1, 0, 0, 1, 1, ...
-3, -2, -2, -1, -1, 0, -2, -1, -1, 0, 0, ...
-3, -2, -2, -1, -1, 0, -2, -1, -1, 0, 0, ...
...
The topmost row:
A034968 (and also the leftmost column negated).
Cf.
A230415 (similar array which gives the number of differing digits).
Cf.
A231713 (similar array which gives the sum of absolute differences).
Showing 1-4 of 4 results.
Comments