cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230491 Integer areas of the integer-sided triangles such that the length of the inradius is a square.

Original entry on oeis.org

6, 84, 96, 108, 120, 132, 144, 156, 168, 180, 240, 264, 300, 324, 396, 420, 432, 468, 486, 504, 540, 594, 630, 684, 720, 756, 864, 990, 1026, 1080, 1116, 1134, 1152, 1224, 1332, 1344, 1404, 1440, 1494, 1536, 1584, 1638, 1680, 1710, 1728, 1782, 1824, 1872, 1890
Offset: 1

Views

Author

Michel Lagneau, Oct 20 2013

Keywords

Comments

The primitive areas are 6, 84, 108, 120, 132, 144, 156, 168, ...
The non-primitive areas 16*a(n) are in the sequence because if r is the inradius corresponding to a(n), then 4*r is the inradius corresponding to 16*a(n).
The following table gives the first values (A, r, a, b, c) where A is the integer area, r the inradius and a, b, c are the integer sides of the triangle.
******************************
* A * r * a * b * c *
*******************************
* 6 * 1 * 3 * 4 * 5 *
* 84 * 4 * 13 * 14 * 15 *
* 96 * 4 * 12 * 16 * 20 *
* 108 * 4 * 15 * 15 * 24 *
* 120 * 4 * 10 * 24 * 26 *
* 132 * 4 * 11 * 25 * 30 *
* 144 * 4 * 18 * 20 * 34 *
* 156 * 4 * 15 * 26 * 37 *
* 168 * 4 * 10 * 35 * 39 *
* 180 * 4 * 9 * 40 * 41 *
* 240 * 4 * 12 * 50 * 58 *
* 264 * 4 * 33 * 34 * 65 *
* 300 * 4 * 25 * 51 * 74 *
* 324 * 4 * 9 * 75 * 78 *
* 396 * 4 * 11 * 90 * 97 *
* 420 * 4 * 21 * 85 * 104 *
* 432 * 9 * 30 * 30 * 36 *
* 468 * 9 * 25 * 39 * 40 *
.........................

Examples

			84 is in the sequence because the area of triangle (13, 14, 15) is given by Heron's formula A = sqrt(21*(21-13)*(21-14)*(21-15))= 84 where the number 21 is the semiperimeter and the inradius is given by r = A/s = 84/21 = 4 is a square.
		

References

  • Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.

Crossrefs

Programs

  • Mathematica
    nn = 600; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 && IntegerQ[Sqrt[area2]] && IntegerQ[Sqrt[Sqrt[area2]/s]], AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}]; Union[lst]

Formula

Area A = sqrt(s*(s-a)*(s-b)*(s-c)) with s = (a+b+c)/2 (Heron's formula) and inradius r = A/s.