A230491 Integer areas of the integer-sided triangles such that the length of the inradius is a square.
6, 84, 96, 108, 120, 132, 144, 156, 168, 180, 240, 264, 300, 324, 396, 420, 432, 468, 486, 504, 540, 594, 630, 684, 720, 756, 864, 990, 1026, 1080, 1116, 1134, 1152, 1224, 1332, 1344, 1404, 1440, 1494, 1536, 1584, 1638, 1680, 1710, 1728, 1782, 1824, 1872, 1890
Offset: 1
Keywords
Examples
84 is in the sequence because the area of triangle (13, 14, 15) is given by Heron's formula A = sqrt(21*(21-13)*(21-14)*(21-15))= 84 where the number 21 is the semiperimeter and the inradius is given by r = A/s = 84/21 = 4 is a square.
References
- Mohammad K. Azarian, Circumradius and Inradius, Problem S125, Math Horizons, Vol. 15, Issue 4, April 2008, p. 32. Solution published in Vol. 16, Issue 2, November 2008, p. 32.
Links
- Eric W. Weisstein, MathWorld: Inradius
Programs
-
Mathematica
nn = 600; lst = {}; Do[s = (a + b + c)/2; If[IntegerQ[s], area2 = s (s - a) (s - b) (s - c); If[0 < area2 && IntegerQ[Sqrt[area2]] && IntegerQ[Sqrt[Sqrt[area2]/s]], AppendTo[lst, Sqrt[area2]]]], {a, nn}, {b, a}, {c, b}]; Union[lst]
Formula
Area A = sqrt(s*(s-a)*(s-b)*(s-c)) with s = (a+b+c)/2 (Heron's formula) and inradius r = A/s.
Comments