A230492 Numbers such that the sequence of all possible sums of divisors of n is increasing but not strictly so, the sums being ordered by their characteristic functions, seen as binary numbers (see example).
6, 28, 117, 475, 496, 775, 2009, 8128, 13079, 13189, 14663, 16211, 23903, 26675, 30503, 35425, 37271, 41123, 43681, 44591, 46163, 47519, 55991, 59831, 63971, 66263, 66785, 73511, 76751, 78319, 81923, 88559, 88723, 107423, 112631, 127571, 130271, 140825
Offset: 1
Keywords
Examples
For n=6, the divisors of 6 are (1,2,3,6) and the sums of distinct divisors are: 0001: 1 = 1 0010: 2 = 2 0011: 2 + 1 = 3 0100: 3 = 3 0101: 3 + 1 = 4 0110: 3 + 2 = 5 0111: 3 + 2 + 1 = 6 1000: 6 = 6 1001: 6 + 1 = 7 1010: 6 + 2 = 8 1011: 6 + 2 + 1 = 9 1100: 6 + 3 = 9 1101: 6 + 3 + 1 = 10 1110: 6 + 3 + 2 = 11 1111: 6 + 3 + 2 + 1 = 12 The numbers in the right column are increasing but not strictly so, thus 6 belongs to the sequence. Missing row 1000 added following remark by _Vladimir Shevelev_. - _Michel Marcus_, Dec 20 2013
Links
- Michel Marcus, Table of n, a(n) for n = 1..250
- Jack Brennen, Re: Questions on A230492, Dec 20 2013
- Donovan Johnson, Re: Questions on A230492, Dec 20 2013
- Vladimir Shevelev, Re: Questions on A230492, Dec 20 2013
Crossrefs
Cf. A030057.
Programs
-
Mathematica
inOrderQ[n_] := Module[{d, len, hasZero, last, b, p}, d = Reverse[Divisors[n]]; len = Length[d]; hasZero = False; last = 1;b = 2; While[p = Inner[Times, d, IntegerDigits[b, 2, len], Plus]; If[p == last, hasZero = True]; p >= last && b < 2^len - 1, b++; last = p]; hasZero && p >= last && b == 2^len - 1]; Select[Range[2, 150000], inOrderQ] (* T. D. Noe, Oct 23 2013 *)
-
PARI
padbin(n, len) = {b = binary(n); while(length(b) < len, b = concat(0, b);); b;} tds(n) = {/* returns -1, if sums go up and down; returns 0 if sums are increasing but not strictly ; returns 1 if sums are strictly increasing */ divs = divisors(n); nbdivs = #divs; rdivs = vector(nbdivs, i, divs[nbdivs-i+1]); nb = 2^nbdivs-1; iseq = 0; precs = 0 ; for (i=1, nb, vb = padbin(i, nbdivs); nexts = sum(j=1, nbdivs, rdivs[j]*vb[j]); diff = nexts - precs; if (diff < 0, return (-1)); if (diff == 0, iseq = 1); precs = nexts; ); return (1 - iseq);} isok(n) = tds(n) == 0; \\ Michel Marcus, Oct 20 2013
-
PARI
divsums(n) = {/* returns vector of ordered sums of divisors */ divs = divisors(n); nbdivs = #divs; rdivs = vector(nbdivs, i, divs[nbdivs-i+1]); nb = 2^nbdivs-1; vsd = vector(nb); for (i=1, nb, vb = padbin(i, nbdivs); vsd[i] = sum(j=1, nbdivs, rdivs[j]*vb[j]);); vsd;} \\ Michel Marcus, Oct 20 2013
-
PARI
is_A230492(n)={my(s=0,t,v,ok=0); for(i=2, 2^(#n=vecextract( divisors(n),"^1"))-1, s+1>( t=sum(j=1, #v=vecextract(n,i), v[j])) && return; s+1==(s=t) && ok=1);ok} \\ M. F. Hasler, Oct 23 2013
Extensions
Values double-checked by M. F. Hasler, Oct 23 2013
b-file extended by Michel Marcus, Dec 18 2013
Comments