A230515 Numbers n such that n*(n+1)-1 is a Sophie Germain prime.
2, 3, 5, 6, 9, 11, 15, 20, 38, 39, 45, 48, 50, 54, 59, 93, 126, 131, 144, 149, 153, 174, 176, 218, 231, 236, 240, 246, 248, 263, 285, 306, 309, 330, 335, 374, 380, 395, 396, 401, 419, 423, 449, 455, 468, 471, 474, 495, 501, 506, 549, 551, 560, 588
Offset: 1
Keywords
Examples
a(1) = 2 since 2*3 - 1 = 5 is a Sophie Germain prime. a(2) = 3 since 3*4 - 1 = 11 is a Sophie Germain prime. a(3) = 5 since 5*6 - 1 = 29 is a Sophie Germain prime but 4*5 - 1 = 19 is not.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[n: n in [1..600] | IsPrime(n*(n+1)-1) and IsPrime(2*n*(n+1)-1)]; // Bruno Berselli, Oct 22 2013
-
Mathematica
q[n_]:=PrimeQ[n(n+1)-1]&&PrimeQ[2n(n+1)-1] m=0 Do[If[q[n],m=m+1;Print[m," ",n]],{n,1,506}] Select[Range[600],AllTrue[{#^2+#-1,2#^2+2#-1},PrimeQ]&] (* Harvey P. Dale, Dec 02 2021 *)
Comments