cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230584 Either two less than a square or two more than a square.

Original entry on oeis.org

2, 3, 6, 7, 11, 14, 18, 23, 27, 34, 38, 47, 51, 62, 66, 79, 83, 98, 102, 119, 123, 142, 146, 167, 171, 194, 198, 223, 227, 254, 258, 287, 291, 322, 326, 359, 363, 398, 402, 439, 443, 482, 486, 527, 531, 574, 578, 623, 627, 674, 678, 727, 731, 782, 786, 839, 843, 898, 902, 959, 963
Offset: 1

Views

Author

Ralf Stephan, Oct 24 2013

Keywords

Comments

Numbers n such that the polynomial x^4 - n*x^2 + 1 is reducible.
The corresponding factorizations are (x^2 + k*x - 1)*(x^2 - k*x - 1) == x^4 - (k^2 + 2)*x^2 + 1 and (x^2 + k*x + 1)*(x^2 - k*x + 1) == x^4 - (k^2 - 2)*x^2 + 1. - Joerg Arndt, Feb 07 2015
Union of A008865 and A059100.
For k > 1: a(2*k+1) - a(2*k) = 4 and a(2*k) - a(2*k-1) = k - 1; for n > 4: a(n) - a(n-2) = 2*floor(n/2) + 1 = A109613(n). - Reinhard Zumkeller, Feb 10 2015

Crossrefs

Programs

  • Haskell
    import Data.List (transpose)
    a230584 n = a230584_list !! (n-1)
    a230584_list = 2 : 3 : concat
                   (transpose [drop 2 a059100_list, drop 2 a008865_list])
    -- Reinhard Zumkeller, Feb 10 2015
  • PARI
    is(n)=issquare(n-2)||issquare(n+2)
    
  • PARI
    A230584_vec(N)=Vec((2+x-x^2-x^3+2*x^5-x^6)/((1-x)^3*(1+x)^2)+O(x^N)) \\ M. F. Hasler, Oct 26 2013
    

Formula

From Colin Barker, Oct 24 2013: (Start)
a(n) = (5-13*(-1)^n+2*(3+(-1)^n)*n+2*n^2)/8 for n>2.
a(n) = (n^2+4*n-4)/4 for n>2 and even.
a(n) = (n^2+2*n+9)/4 for n>2 and odd.
a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5) for n>7.
G.f.: x*(x^6-2*x^5+x^3+x^2-x-2) / ((x-1)^3*(x+1)^2). (End)
After the first two terms 0^2+2 = 2^2-2, 1^2+2, the squares are sufficiently spaced to ensure that the sequence continues 2^2+2, 3^2-2, 3^2+2, 4^2-2, 4^2+2,..., i.e., a(2n-1) = n^2+2, a(2n)=(n+1)^2-2. - M. F. Hasler, Oct 26 2013