A298375 Partial sums of A230584.
2, 5, 11, 18, 29, 43, 61, 84, 111, 145, 183, 230, 281, 343, 409, 488, 571, 669, 771, 890, 1013, 1155, 1301, 1468, 1639, 1833, 2031, 2254, 2481, 2735, 2993, 3280, 3571, 3893, 4219, 4578, 4941, 5339, 5741, 6180, 6623, 7105, 7591, 8118, 8649, 9223, 9801, 10424
Offset: 1
Examples
For n = 5 then a(5) = 2+3+6+7+11 = 29.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,1,-4,1,2,-1).
Crossrefs
Cf. A230584.
Programs
-
Mathematica
CoefficientList[ Series[(2 + x - x^2 - x^3 + 2x^5 - x^6)/((x -1)^4 (x + 1)^2), {x, 0, 50}], x] (* Robert G. Wilson v, Jan 18 2018 *)
-
PARI
Vec(x*(2 + x - x^2 - x^3 + 2*x^5 - x^6) / ((1 - x)^4*(1 + x)^2) + O(x^50)) \\ Colin Barker, Jan 18 2018
Formula
Let g = n + ((n + 1) mod 2), then for n > 1,
a(n) = (g^3 + 6*g^2 + 11*g + 18) / 12 - If(n mod 2 = 1, 0, ((n + 2) / 2)^2 + 2).
From Colin Barker, Jan 18 2018: (Start)
G.f.: x*(2 + x - x^2 - x^3 + 2*x^5 - x^6) / ((1 - x)^4*(1 + x)^2).
a(n) = (n^3 + 6*n^2 + 14*n) / 12 for n>1 and even.
a(n) = (n^3 + 6*n^2 + 11*n + 18) / 12 for n>1 and odd.
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n>6.
(End)
Comments