cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230593 a(n) = n * Sum_{q|n} 1 / q, where q are noncomposite numbers (A008578) dividing n.

Original entry on oeis.org

1, 3, 4, 6, 6, 11, 8, 12, 12, 17, 12, 22, 14, 23, 23, 24, 18, 33, 20, 34, 31, 35, 24, 44, 30, 41, 36, 46, 30, 61, 32, 48, 47, 53, 47, 66, 38, 59, 55, 68, 42, 83, 44, 70, 69, 71, 48, 88, 56, 85, 71, 82, 54, 99, 71, 92, 79, 89, 60, 122, 62, 95, 93, 96, 83, 127
Offset: 1

Views

Author

Jaroslav Krizek, Oct 25 2013

Keywords

Examples

			For n = 6: a(6) = 6 * (1/1 + 1/2 + 1/3) = 11.
		

Crossrefs

Coincides with A129283 on squarefree numbers, A005117.

Programs

  • Mathematica
    a[n_] := n * DivisorSum[n, 1/# &, !CompositeQ[#] &]; Array[a, 100] (* Amiram Eldar, Nov 12 2021 *)
  • PARI
    A230593(n) = sumdiv(n,d,((1==d)||isprime(d))*(n/d)); \\ Antti Karttunen, Nov 12 2021

Formula

For n > 1, a(n) = n + n * Sum_(p|n) 1 / p, where p are primes dividing n.
a(n) = A069359(n) + n.
a(n) = Sum_{d|n} A080339(d) * A000027(n/d).
a(n) = A080339(n) * A000027(n), where operation * denotes Dirichlet convolution, i.e. convolution of type: a(n) = Sum_{d|n} b(d) * c(n/d).
For p, q = distinct primes, a(p) = p + 1, a(pq) = pq - 1.
From Antti Karttunen, Nov 12 2021: (Start)
a(n) = A129283(n) - A329039(n).
a(A005117(n)) = A129283(A005117(n)), for all n >= 1.
(End)
For p prime, k>=1, a(p^k) = p^(k-1) * (p+1). - Bernard Schott, Nov 12 2021