A230593 a(n) = n * Sum_{q|n} 1 / q, where q are noncomposite numbers (A008578) dividing n.
1, 3, 4, 6, 6, 11, 8, 12, 12, 17, 12, 22, 14, 23, 23, 24, 18, 33, 20, 34, 31, 35, 24, 44, 30, 41, 36, 46, 30, 61, 32, 48, 47, 53, 47, 66, 38, 59, 55, 68, 42, 83, 44, 70, 69, 71, 48, 88, 56, 85, 71, 82, 54, 99, 71, 92, 79, 89, 60, 122, 62, 95, 93, 96, 83, 127
Offset: 1
Keywords
Examples
For n = 6: a(6) = 6 * (1/1 + 1/2 + 1/3) = 11.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..20000
Crossrefs
Programs
-
Mathematica
a[n_] := n * DivisorSum[n, 1/# &, !CompositeQ[#] &]; Array[a, 100] (* Amiram Eldar, Nov 12 2021 *)
-
PARI
A230593(n) = sumdiv(n,d,((1==d)||isprime(d))*(n/d)); \\ Antti Karttunen, Nov 12 2021
Formula
For n > 1, a(n) = n + n * Sum_(p|n) 1 / p, where p are primes dividing n.
a(n) = A069359(n) + n.
a(n) = A080339(n) * A000027(n), where operation * denotes Dirichlet convolution, i.e. convolution of type: a(n) = Sum_{d|n} b(d) * c(n/d).
For p, q = distinct primes, a(p) = p + 1, a(pq) = pq - 1.
From Antti Karttunen, Nov 12 2021: (Start)
(End)
For p prime, k>=1, a(p^k) = p^(k-1) * (p+1). - Bernard Schott, Nov 12 2021