A230601 a(n) = Lucas(2^n + 2).
4, 7, 18, 123, 5778, 12752043, 62113250390418, 1473646213395791149646646123, 829490056885282616312940022414182153153900944625970578, 262813148121156922478324605390890951672774150584488451750823334086851733999224817160730017360019778038580843
Offset: 0
Examples
Engel series expansion of Phi^(2^n + 4) to the base Phi^2 for n = 1 to 4. n = 1 Phi^6 = Phi^2/7 + Phi^4/(7*18) + Phi^6/(7*18*123) + Phi^8/(7*18*123*5778) + ... n = 2: Phi^8 = Phi^2/18 + Phi^4/(18*123) + Phi^6/(18*123*5778) + ... n = 3: Phi^12 = Phi^2/123 + Phi^4/(123*5778) + Phi^6/(123*5778*12752043) + ... n = 4: Phi^20 = Phi^2/5778 + Phi^4/(5778*12752043) + ...
Links
- Wikipedia, Engel Expansion
Programs
-
Magma
[Lucas(2^n +2): n in [0..10]]; // G. C. Greubel, Dec 22 2017
-
Mathematica
Table[LucasL[2^n + 2], {n, 0, 10}]
-
PARI
for(n=0,10, print1(fibonacci(2^n+3) + fibonacci(2^n +1), ", ")) \\ G. C. Greubel, Dec 22 2017
Comments