A230695 Number T(n,k) of permutations of [n] with exactly k (possibly overlapping) occurrences of the consecutive step pattern up, down, down, up; triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-2)/3)), read by rows.
1, 1, 2, 6, 24, 109, 11, 588, 132, 3654, 1386, 26125, 13606, 589, 209863, 139714, 13303, 1876502, 1508756, 243542, 18441367, 17429745, 3953529, 92159, 197776850, 214536114, 63334182, 3354454, 2297242583, 2815529811, 1020982869, 93265537, 28739304385
Offset: 0
Examples
T(5,1) = 11: 14325, 15324, 15423, 24315, 25314, 25413, 34215, 35214, 35412, 45213, 45312. T(8,2) = 589: 14327658, 14328657, 14328756, ..., 78635412, 78645213, 78645312. Triangle T(n,k) begins: : 0 : 1; : 1 : 1; : 2 : 2; : 3 : 6; : 4 : 24; : 5 : 109, 11; : 6 : 588, 132; : 7 : 3654, 1386; : 8 : 26125, 13606, 589; : 9 : 209863, 139714, 13303; : 10 : 1876502, 1508756, 243542; : 11 : 18441367, 17429745, 3953529, 92159;
Links
- Alois P. Heinz, Rows n = 0..100, flattened
Programs
-
Maple
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, expand( add(b(u-j, o+j-1, [1, 3, 4, 1][t]), j=1..u)+ add(b(u+j-1, o-j, 2)*`if`(t=4, x, 1), j=1..o))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0, 1)): seq(T(n), n=0..15);
-
Mathematica
b[u_, o_, t_] := b[u, o, t] = If[u + o == 0, 1, Expand[ Sum[b[u - j, o + j - 1, {1, 3, 4, 1}[[t]]], {j, 1, u}] + Sum[b[u + j - 1, o - j, 2]*If[t == 4, x, 1], {j, 1, o}]]]; T[n_] := CoefficientList[b[n, 0, 1], x]; T /@ Range[0, 15] // Flatten (* Jean-François Alcover, Mar 22 2021, after Alois P. Heinz *)