cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A230712 Values of x such that x^2 + y^2 = 37^n with x and y coprime and 0 < x < y.

Original entry on oeis.org

1, 12, 107, 840, 5646, 27755, 124158, 462961, 961686, 5589325, 102654282, 1025046359, 8502347874, 64101459205, 356029844147, 1681548425760, 7005476875681, 21848430755052, 2978524660427, 772649642011800
Offset: 1

Views

Author

Colin Barker, Oct 28 2013

Keywords

Comments

The corresponding y-values are in A230713.

Examples

			a(3)=107 because 107^2+198^2=50653=37^3.
		

Crossrefs

Programs

  • Mathematica
    Table[Select[PowersRepresentations[37^n, 2, 2], CoprimeQ@@#&][[1, 1]], {n, 1, 40}] (* Vincenzo Librandi, Mar 02 2014 *)

A230744 Values of y such that x^2 + y^2 = 41^n with x and y coprime and 0 < x < y.

Original entry on oeis.org

5, 40, 236, 1519, 10475, 54280, 441284, 2187360, 17694245, 103595049, 673741196, 4610651760, 24155269835, 194708863431, 956722571075, 7826203465920, 45467666569916, 298790677846089, 2029162683616205, 10747406201475600, 85901867185267604, 418375017592176440
Offset: 1

Views

Author

Colin Barker, Oct 29 2013

Keywords

Comments

The corresponding x-values are in A230743.

Examples

			a(3)=236 because 115^2+236^2=68921=41^3.
		

Crossrefs

A230760 Values of y such that x^2 + y^2 = 53^n with x and y coprime and 0 < x < y.

Original entry on oeis.org

7, 45, 286, 2520, 20122, 148148, 1007606, 6254640, 46181513, 391594275, 3034699661, 21731298679, 143399099473, 855828562635, 7344390292954, 60173627260320, 453178096117918, 3155291100853892, 20155636317704834, 131804682060038201, 1152529734625490207
Offset: 1

Views

Author

Colin Barker, Oct 29 2013

Keywords

Comments

The corresponding x-values are in A230759.

Examples

			a(3)=286 because 259^2+286^2=148877=53^3.
		

Crossrefs

A230842 Values of y such that x^2 + y^2 = 61^n with x and y coprime and 0 < x < y.

Original entry on oeis.org

6, 60, 415, 3479, 27474, 194220, 1752665, 10361041, 108089046, 665045051, 6449019055, 45629658360, 371682946434, 3000926368429, 20605153668425, 190323205453920, 1089586196530086, 11672337637546091, 73603293662217846, 692487869011494600, 5011061854350480605
Offset: 1

Views

Author

Colin Barker, Oct 31 2013

Keywords

Comments

The corresponding x-values are in A230841.

Examples

			a(3)=415 because 234^2+415^2=226981=61^3.
		

Crossrefs

Programs

  • Mathematica
    Table[Select[PowersRepresentations[61^n, 2, 2], CoprimeQ[#[[1]], #[[2]]] &][[1, 2]], {n, 21}] (* T. D. Noe, Nov 04 2013 *)

A230963 Values of y such that x^2 + y^2 = 73^n with x and y coprime and 0 < x < y.

Original entry on oeis.org

8, 55, 549, 5280, 44403, 325008, 2685304, 27358559, 241709752, 1870181225, 12766175931, 138963670560, 1291487885997, 10519458225072, 74032715923371, 690521409218881, 6773980286782088, 57975621715535095, 433109386513469096, 3345582274543898400
Offset: 1

Views

Author

Colin Barker, Nov 02 2013

Keywords

Comments

The corresponding x-values are in A230962.

Examples

			a(3)=549 because 296^2 + 549^2 = 389017 = 73^3.
		

Crossrefs

Programs

  • Maple
    f:=n ->  max([abs@Re,abs@Im]((3+8*I)^n)):
    map(f, [$1..50]); # Robert Israel, Mar 31 2017
  • Mathematica
    Table[Max[Abs[Re[(3 + 8I)^n]], Abs[Im[(3 + 8I)^n]]], {n, 30}] (* Indranil Ghosh, Mar 31 2017, after formula by Robert Israel *)
  • Python
    from sympy import I, re, im
    print([max(abs(re((3 + 8*I)**n)), abs(im((3 + 8*I)**n))) for n in range(1, 31)]) # Indranil Ghosh, Mar 31 2017, after formula by Robert Israel

Formula

From Robert Israel, Mar 31 2017: (Start)
a(n) = max(abs(Re((3+8i)^n)), abs(Im((3+8i)^n))).
a(n) = abs(Im(3+8i)^n) if and only if 1/4 < frac(n*arctan(8/3)/Pi) < 3/4.(End)
Showing 1-5 of 5 results.