A050931 Numbers having a prime factor congruent to 1 mod 6.
7, 13, 14, 19, 21, 26, 28, 31, 35, 37, 38, 39, 42, 43, 49, 52, 56, 57, 61, 62, 63, 65, 67, 70, 73, 74, 76, 77, 78, 79, 84, 86, 91, 93, 95, 97, 98, 103, 104, 105, 109, 111, 112, 114, 117, 119, 122, 124, 126, 127, 129, 130, 133, 134, 139, 140, 143, 146, 147, 148, 151
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Bojan Mohar, Hermitian adjacency spectrum and switching equivalence of mixed graphs, arXiv preprint arXiv:1505.03373 [math.CO], 2015.
- Planet Math, Truncated cone
- Eric Weisstein's World of Mathematics, Triangle - see especially (19)
- Index entries for sequences related to A2 = hexagonal = triangular lattice
Programs
-
Haskell
a050931 n = a050931_list !! (n-1) a050931_list = filter (any (== 1) . map (flip mod 6) . a027748_row) [1..] -- Reinhard Zumkeller, Apr 09 2014
-
Mathematica
Select[Range[2,200],MemberQ[Union[Mod[#,6]&/@FactorInteger[#][[All,1]]],1]&] (* Harvey P. Dale, Aug 24 2019 *)
-
PARI
is_A050931(n)=n>6&&Set(factor(n)[,1]%6)[1]==1 \\ M. F. Hasler, Mar 04 2018
Formula
A005088(a(n)) > 0. Terms are obtained by the products A230780(k)*A004611(p) for k, p > 0, ordered by increasing values. - Jean-Christophe Hervé, Nov 24 2013
cot(2*Pi/3) = -1/sqrt(3) = -0.57735... = - A020760. - M. F. Hasler, Aug 18 2016
Extensions
Simpler definition from M. F. Hasler, Mar 04 2018
Comments