cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230821 Decimal expansion of Product_{n>=3} cosh(Pi/n).

Original entry on oeis.org

6, 1, 5, 0, 1, 8, 0, 2, 2, 0, 7, 9, 6, 8, 1, 7, 6, 9, 5, 2, 6, 8, 1, 7, 3, 9, 5, 8, 4, 8, 2, 1, 2, 3, 1, 8, 9, 8, 2, 6, 1, 6, 7, 8, 0, 6, 2, 0, 2, 8, 1, 2, 3, 6, 3, 2, 8, 2, 0, 8, 1, 5, 7, 2, 4, 4, 0, 2, 5, 7, 8, 8, 2, 8, 2, 2, 8, 7, 8, 3, 8, 9, 6, 3, 2, 4, 8, 9, 7, 6, 9, 7, 8, 4, 0, 5, 3, 2, 5, 9, 5, 7, 1, 4, 2
Offset: 1

Views

Author

Robert G. Wilson v, Oct 30 2013

Keywords

Examples

			6.15018022079681769526817395848212318982616780620281236328208157244...
		

Crossrefs

Programs

  • Maple
    evalf(product(1/sech(Pi/k), k=3..infinity), 120) # Vaclav Kotesovec, Sep 20 2014
  • Mathematica
    (* RealDigits[ N[ Product[ Cosh[ Pi/n], {n, 3, Infinity}], 111]][[1]] *) [This approach turns out to give incorrect numerical results. - Vaclav Kotesovec, Sep 20 2014]
    Block[{$MaxExtraPrecision = 1000}, Do[Print[N[1/Exp[Sum[(-1)^(n+1) * (2^(2*n)-1)/n * Zeta[2*n]*(Zeta[2*n] - 1 - 1/2^(2*n)), {n, 1, m}]], 110]], {m, 250, 300}]] (* Vaclav Kotesovec, Sep 20 2014 *)
  • PARI
    default(realprecision,150); exp(sumpos(n=3, log(cosh(Pi/n)))) \\ Vaclav Kotesovec, Sep 20 2014

Formula

From Amiram Eldar, Jul 30 2023: (Start)
Equals exp(Sum_{k>=1} (2^(2*k)-1)*B(2*k)*(2*Pi)^(2*k)*(zeta(2*k)-1-1/2^(2*k))/(2*k*(2*k)!)), where B(k) is the k-th Bernoulli number.
Equals exp(Sum_{k>=1} (-1)^(k+1)*(2^(2*k)-1)*zeta(2*k)*(zeta(2*k)-1-1/2^(2*k))/k). (End)

Extensions

Corrected by Vaclav Kotesovec, Sep 20 2014