cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A249673 Decimal expansion of Product_{n>=1} cosh(1/n).

Original entry on oeis.org

2, 1, 1, 6, 4, 6, 5, 5, 3, 6, 5, 0, 5, 4, 8, 4, 7, 7, 5, 8, 7, 8, 5, 7, 2, 2, 2, 7, 0, 2, 5, 8, 3, 1, 9, 8, 8, 1, 4, 8, 0, 8, 9, 3, 9, 2, 8, 0, 9, 0, 8, 2, 5, 6, 8, 2, 8, 1, 3, 4, 8, 0, 7, 8, 6, 9, 4, 2, 3, 8, 3, 0, 7, 2, 8, 9, 0, 1, 1, 7, 2, 9, 9, 6, 1, 9, 3, 4, 6, 5, 9, 2, 4, 3, 1, 0, 8, 8, 9, 4, 2, 8, 6, 3, 7
Offset: 1

Views

Author

Vaclav Kotesovec, Nov 03 2014

Keywords

Examples

			2.116465536505484775878572227025831988148089392809082568281348...
		

Crossrefs

Programs

  • Maple
    evalf(exp(sum(log(cosh(1/n)), n=1..infinity)), 100)
  • PARI
    default(realprecision,120); exp(sumpos(k=1, log(cosh(1/k))))

Formula

From Amiram Eldar, Jul 30 2023: (Start)
Equals exp(Sum_{k>=1} 2^(2*k-1)*(2^(2*k)-1)*B(2*k)*zeta(2*k)/(k*(2*k)!)), where B(k) is the k-th Bernoulli number.
Equals exp(Sum_{k>=1} (-1)^(k+1)*(2^(2*k)-1)*zeta(2*k)^2/(k*Pi^(2*k))). (End)

A118817 Decimal expansion of Product_{n >= 1} cos(1/n).

Original entry on oeis.org

3, 8, 8, 5, 3, 6, 1, 5, 3, 3, 3, 5, 1, 7, 5, 8, 5, 9, 1, 8, 4, 3, 2, 9, 5, 7, 5, 6, 8, 7, 0, 3, 5, 9, 0, 5, 0, 1, 3, 9, 0, 0, 5, 2, 8, 5, 9, 7, 5, 1, 7, 9, 2, 1, 9, 1, 3, 1, 8, 4, 6, 1, 1, 9, 9, 8, 7, 9, 8, 7, 4, 9, 4, 3, 4, 6, 3, 3, 9, 3, 2, 7, 6, 8, 3, 8, 8, 4, 3, 1, 9, 7, 8, 1, 3, 8, 3, 4, 0, 8, 2, 2, 4, 1, 3
Offset: 0

Views

Author

Fredrik Johansson, May 23 2006

Keywords

Examples

			0.38853615333517585918432957568703590501390...
		

Crossrefs

Programs

  • Maple
    nn:= 120:
    p:= product(cos(1/n), n=1..infinity):
    f:= evalf(p, nn+10):
    s:= convert(f, string):
    seq(parse(s[n+1]), n=1..nn);  # Alois P. Heinz, Nov 04 2013
  • Mathematica
    S = Series[Log[Cos[x]], {x, 0, 400}]; N[Exp[N[Sum[SeriesCoefficient[S, 2k] Zeta[2k], {k, 1, 200}], 70]], 50]
    Block[{$MaxExtraPrecision = 1000}, Do[Print[N[1/Exp[Sum[(2^(2*n) - 1)*Zeta[2*n]^2/(n*Pi^(2*n)), {n, 1, m}]], 110]], {m, 250, 300}]] (* Vaclav Kotesovec, Sep 20 2014 *)
  • PARI
    exp(-sumpos(n=1,-log(cos(1/n)))) \\ warning: requires 2.6.2 or greater; Charles R Greathouse IV, Nov 04 2013
    
  • PARI
    T(n)=((-4)^n-(-16)^n)*bernfrac(2*n)/2/n/(2*n)!
    lm=lambertw(2*log(Pi/2)*10^default(realprecision))/2/log(Pi/2); exp(-sum(n=1,lm,T(n)*zeta(2*n))) \\ Charles R Greathouse IV, Nov 06 2013

Formula

Equals exp(Sum_{n>=1} -c(n)*zeta(2*n)), where c(n) = A046990(n)/A046991(n).
Equals exp(-Sum_{n>=1} (2^(2*n)-1) * Zeta(2*n)^2 / (n*Pi^(2*n)) ). - Vaclav Kotesovec, Sep 20 2014
Equals exp(Sum_{k>=1} (-1)^k*2^(2*k-1)*(2^(2*k)-1)*B(2*k)*zeta(2*k)/(k*(2*k)!)), where B(k) is the k-th Bernoulli number. - Amiram Eldar, Jul 30 2023

Extensions

Corrected offset and extended by Robert G. Wilson v, Nov 03 2013
Showing 1-2 of 2 results.