cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A218504 E.g.f.: Product_{n>=1} 1/(1 - tanh(x^n/n)).

Original entry on oeis.org

1, 1, 3, 9, 40, 200, 1286, 9002, 74712, 672408, 6892312, 75815432, 925733216, 12034531808, 170656068480, 2559841027200, 41356302857344, 703057148574848, 12752569691858048, 242298824145302912, 4875886476833445888, 102393616013502363648, 2264106940756915715584
Offset: 0

Views

Author

Paul D. Hanna, Oct 31 2012

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 9*x^3/3! + 40*x^4/4! + 200*x^5/5! +...
where A(x) = 1/((1-tanh(x))*(1-tanh(x^2/2))*(1-tanh(x^3/3))*(1-tanh(x^4/4))*...)
Let G(x) = Product_{n>=1} cosh(x^n/n) be the e.g.f. of A130268:
G(x) = 1 + x^2/2! + 4*x^4/4! + 86*x^6/6! + 2696*x^8/8! + 168232*x^10/10! +...
then e.g.f. A(x) = G(x)/(1-x).
		

Crossrefs

Programs

  • Mathematica
    nn = 25; Range[0, nn]! * CoefficientList[Series[1/(1 - x)*Product[Cosh[x^k/k], {k, 1, nn}], {x, 0, nn}], x] (* Vaclav Kotesovec, Mar 20 2016 *)
  • PARI
    {a(n)=n!*polcoeff(1/prod(k=1, n, (1-tanh(x^k/k+x*O(x^n)))), n)}
    for(n=0,30,print1(a(n),", "))

Formula

E.g.f.: 1/(1-x) * Product_{n>=1} cosh(x^n/n); see A130268.
a(n) ~ c * n!, where c = A249673 = Product_{k>=1} cosh(1/k) = 2.1164655365... . - Vaclav Kotesovec, Nov 03 2014

A270598 E.g.f.: Product_{k>0} (1 + tanh(x^k/k)).

Original entry on oeis.org

1, 1, 1, 3, 14, 70, 364, 2548, 21104, 189936, 1830968, 20140648, 241712272, 3142259536, 43472528384, 652087925760, 10396900456448, 176747307759616, 3162885135453952, 60094817573625088, 1198006583353972736, 25158138250433427456, 551506339507727783936
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 20 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nn=25; Range[0, nn]! * CoefficientList[Series[Product[1+Tanh[x^k/k], {k, 1, nn}], {x, 0, nn}], x]

Formula

E.g.f.: Product_{k>0} exp(x^k/k)/cosh(x^k/k).
a(n) ~ c * n!, where c = 1/A249673 = 1/Product_{k>=1} cosh(1/k) = 0.472485841489...

A130268 Number of degree-2n permutations such that number of cycles of size k is even (or zero) for every k.

Original entry on oeis.org

1, 1, 4, 86, 2696, 168232, 15948032, 2172623168, 398846422144, 97541017510784, 29909993927387648, 11447388459863715328, 5284740632299379566592, 2927671399386587378671616, 1897593132067741963020476416, 1437515129453860805943287939072
Offset: 0

Views

Author

Vladeta Jovovic, Aug 06 2007

Keywords

Examples

			a(2)=4 because we have (1)(2)(3)(4), (12)(34), (13)(24) and (14)(23).
		

Crossrefs

Programs

  • Maple
    g:=product(cosh(x^k/k),k=1..30): gser:=series(g,x=0,30): seq(factorial(2*n)*coeff(gser,x,2*n),n=0..13); # Emeric Deutsch, Aug 24 2007
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(`if`(j=0 or irem(j, 2)=0, multinomial(n, n-i*j, i$j)
           *(i-1)!^j/j!*b(n-i*j, i-1), 0), j=0..n/i)))
        end:
    a:= n-> b(2*n$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, Mar 09 2015
  • Mathematica
    nn=26;Select[Range[0,nn]!CoefficientList[Series[Product[Cosh[x^k/k],{k,1,nn}],{x,0,nn}],x],#>0&] (* Geoffrey Critzer, Sep 17 2013 *)

Formula

E.g.f.: Product_{k>0} cosh(x^k/k).
a(n) ~ c * (2*n-1)! / n ~ c * sqrt(Pi) * n^(2*n-3/2) * 2^(2*n) / exp(2*n), where c = A249673 = Product_{k>=1} cosh(1/k) = 2.1164655365... . - Vaclav Kotesovec, Mar 19 2016

Extensions

More terms from Emeric Deutsch, Aug 24 2007

A246945 Decimal expansion of the coefficient e^G appearing in the asymptotic expression of the probability that a random n-permutation is a square, as sqrt(2/Pi)*e^G/sqrt(n).

Original entry on oeis.org

1, 2, 2, 1, 7, 7, 9, 5, 1, 5, 1, 9, 2, 5, 3, 6, 8, 3, 3, 9, 6, 4, 8, 5, 2, 9, 8, 4, 4, 5, 6, 3, 6, 1, 2, 1, 2, 7, 8, 8, 8, 1, 0, 1, 4, 8, 1, 4, 6, 9, 7, 7, 2, 8, 6, 8, 3, 8, 6, 3, 9, 6, 2, 9, 7, 0, 9, 2, 3, 3, 0, 4, 0, 3, 0, 0, 4, 8, 9, 3, 7, 3, 9, 9, 9, 6, 6, 2, 9, 8, 4, 3, 6, 7, 7, 8, 7, 9, 8, 7, 5, 8, 6, 7, 0
Offset: 1

Views

Author

Jean-François Alcover, Sep 08 2014

Keywords

Examples

			G = 0.2003084150040401276417752235643787366634879653405876198956293474890714...
e^G = 1.22177951519253683396485298445636121278881014814697728683863962970923...
sqrt(2/Pi)*e^G = 0.974839011877335012323657925154410019528043463671159620094...
		

References

Crossrefs

Programs

  • Maple
    evalf(1/(product(sech(1/(2*k)), k=1..infinity)), 120) # Vaclav Kotesovec, Sep 20 2014
  • Mathematica
    digits = 42; m0 = 10^4; dm = 1000; tail[m_] := (406425600*PolyGamma[1, m] - 2822400*PolyGamma[3, m] + 9408*PolyGamma[5, m] - 17*PolyGamma[7, m])/3251404800; Clear[g]; g[m_] := g[m] = Sum[Log[Cosh[1/(2*k)]], {k, 1, m - 1}] + tail[m] // N[#, digits + 10] &; g[m0] ; g[m = m0 + dm]; While[RealDigits[g[m], 10, digits + 5] != RealDigits[g[m - dm], 10, digits + 5], Print["m = ", m]; m = m + dm]; G = g[m]; RealDigits[E^G, 10, digits ] // First
    Block[{$MaxExtraPrecision = 1000}, Do[Print[N[Exp[Sum[(-1)^(n + 1)*Zeta[2*n]^2*(1 - 1/2^(2*n))/n/Pi^(2*n), {n, 1, m}]], 120]], {m, 100, 150}]] (* Vaclav Kotesovec, Sep 20 2014 *)

Formula

e^G = prod_{k>=1} cosh(1/(2k)).
G = Sum_{n>=1} (-1)^(n+1) * Zeta(2*n)^2 * (1-1/2^(2*n)) / (n * Pi^(2*n)). - Vaclav Kotesovec, Sep 20 2014

Extensions

More terms from Vaclav Kotesovec, Sep 20 2014

A118817 Decimal expansion of Product_{n >= 1} cos(1/n).

Original entry on oeis.org

3, 8, 8, 5, 3, 6, 1, 5, 3, 3, 3, 5, 1, 7, 5, 8, 5, 9, 1, 8, 4, 3, 2, 9, 5, 7, 5, 6, 8, 7, 0, 3, 5, 9, 0, 5, 0, 1, 3, 9, 0, 0, 5, 2, 8, 5, 9, 7, 5, 1, 7, 9, 2, 1, 9, 1, 3, 1, 8, 4, 6, 1, 1, 9, 9, 8, 7, 9, 8, 7, 4, 9, 4, 3, 4, 6, 3, 3, 9, 3, 2, 7, 6, 8, 3, 8, 8, 4, 3, 1, 9, 7, 8, 1, 3, 8, 3, 4, 0, 8, 2, 2, 4, 1, 3
Offset: 0

Views

Author

Fredrik Johansson, May 23 2006

Keywords

Examples

			0.38853615333517585918432957568703590501390...
		

Crossrefs

Programs

  • Maple
    nn:= 120:
    p:= product(cos(1/n), n=1..infinity):
    f:= evalf(p, nn+10):
    s:= convert(f, string):
    seq(parse(s[n+1]), n=1..nn);  # Alois P. Heinz, Nov 04 2013
  • Mathematica
    S = Series[Log[Cos[x]], {x, 0, 400}]; N[Exp[N[Sum[SeriesCoefficient[S, 2k] Zeta[2k], {k, 1, 200}], 70]], 50]
    Block[{$MaxExtraPrecision = 1000}, Do[Print[N[1/Exp[Sum[(2^(2*n) - 1)*Zeta[2*n]^2/(n*Pi^(2*n)), {n, 1, m}]], 110]], {m, 250, 300}]] (* Vaclav Kotesovec, Sep 20 2014 *)
  • PARI
    exp(-sumpos(n=1,-log(cos(1/n)))) \\ warning: requires 2.6.2 or greater; Charles R Greathouse IV, Nov 04 2013
    
  • PARI
    T(n)=((-4)^n-(-16)^n)*bernfrac(2*n)/2/n/(2*n)!
    lm=lambertw(2*log(Pi/2)*10^default(realprecision))/2/log(Pi/2); exp(-sum(n=1,lm,T(n)*zeta(2*n))) \\ Charles R Greathouse IV, Nov 06 2013

Formula

Equals exp(Sum_{n>=1} -c(n)*zeta(2*n)), where c(n) = A046990(n)/A046991(n).
Equals exp(-Sum_{n>=1} (2^(2*n)-1) * Zeta(2*n)^2 / (n*Pi^(2*n)) ). - Vaclav Kotesovec, Sep 20 2014
Equals exp(Sum_{k>=1} (-1)^k*2^(2*k-1)*(2^(2*k)-1)*B(2*k)*zeta(2*k)/(k*(2*k)!)), where B(k) is the k-th Bernoulli number. - Amiram Eldar, Jul 30 2023

Extensions

Corrected offset and extended by Robert G. Wilson v, Nov 03 2013

A270614 Decimal expansion of Product_{k>=1} ((1 + sinh(1/k)) / exp(1/k)).

Original entry on oeis.org

6, 2, 5, 6, 3, 5, 8, 0, 1, 9, 7, 7, 9, 4, 9, 8, 4, 4, 5, 9, 7, 4, 8, 4, 8, 1, 6, 1, 0, 3, 1, 0, 4, 4, 2, 9, 9, 0, 5, 2, 0, 6, 3, 5, 5, 1, 1, 2, 7, 1, 3, 1, 9, 6, 8, 9, 6, 0, 3, 4, 9, 8, 3, 2, 5, 9, 8, 5, 8, 6, 7, 6, 4, 3, 6, 4, 4, 1, 0, 3, 5, 4, 3, 6, 7, 5, 6, 0, 7, 1, 2, 4, 5, 6, 2, 7, 5, 6, 4, 3, 1, 3, 1, 8, 1, 8
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 20 2016

Keywords

Examples

			0.625635801977949844597484816103104429905206355112713196896034983259858...
		

Crossrefs

Programs

  • Maple
    evalf(Product((1+sinh(1/k))/exp(1/k), k=1..infinity), 120);
  • PARI
    default(realprecision, 120); exp(sumpos(k=1, log((1+sinh(1/k))/exp(1/k))))

Formula

Equals limit n->infinity A130263(n)/n!.

A363502 Decimal expansion of Product_{k>=1} k*sinh(1/k).

Original entry on oeis.org

1, 3, 0, 7, 9, 7, 0, 9, 3, 6, 6, 6, 4, 2, 8, 3, 6, 4, 9, 0, 1, 2, 1, 0, 4, 4, 7, 6, 0, 0, 7, 0, 5, 6, 3, 2, 0, 4, 6, 5, 5, 1, 5, 6, 8, 3, 1, 3, 8, 2, 2, 3, 5, 0, 6, 7, 0, 5, 6, 4, 8, 2, 2, 5, 9, 7, 9, 2, 2, 9, 3, 0, 9, 8, 0, 0, 9, 9, 5, 4, 3, 6, 4, 3, 2, 1, 9, 2, 2, 8, 4, 8, 3, 5, 9, 9, 9, 0, 4, 7, 0, 1, 3, 7, 6
Offset: 1

Views

Author

Amiram Eldar, Jul 30 2023

Keywords

Examples

			1.30797093666428364901210447600705632046551568313822...
		

Crossrefs

Similar constants: A118817, A249673, A295219.

Programs

  • Maple
    evalf(exp(sum(log(k*sinh(1/k)), k = 1 .. infinity)), 120)
  • Mathematica
    Block[{$MaxExtraPrecision = 1000}, RealDigits[Exp[Sum[(-1)^(k + 1) * Zeta[2*k]^2 / (k*Pi^(2*k)), {k, 1, 200}]], 10, 120][[1]]]
  • PARI
    exp(-sumpos(k=1,-log(k*sinh(1/k))))

Formula

Equals exp(Sum_{k>=1} 2^(2*k-1)*B(2*k)*zeta(2*k)/(k*(2*k)!)), where B(k) is the k-th Bernoulli number.
Equals exp(Sum_{k>=1} (-1)^(k+1)*zeta(2*k)^2/(k*Pi^(2*k))).
Showing 1-7 of 7 results.