cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A130263 Number of degree-n permutations such that number of cycles of size k is odd (or zero) for every k.

Original entry on oeis.org

1, 1, 1, 6, 14, 85, 529, 3451, 26816, 243909, 2507333, 26196841, 323194816, 4086482335, 57669014597, 864137455455, 13792308331616, 231648908415001, 4211676768746569, 79205041816808905, 1584565388341689032, 33265011234209710011, 730971789582886971689
Offset: 0

Views

Author

Vladeta Jovovic, Aug 06 2007

Keywords

Examples

			a(2)=1 because we have (12) ((1)(2) does not qualify). a(4)=14 because the following 10 permutations of 4 do not qualify: (1)(2)(3)(4), (14)(2)(3), (1)(24)(3), (1)(2)(34), (13)(2)(4), (13)(24), (1)(23)(4), (14)(23), (12)(3)(4) and (12)(34).
		

Crossrefs

Programs

  • Magma
    m:=40;
    f:= func< x | (&*[1 + Sinh(x^j/j): j in [1..m+1]]) >;
    R:=PowerSeriesRing(Rationals(), m);
    Coefficients(R!(Laplace( f(x) ))); // G. C. Greubel, Mar 18 2023
    
  • Maple
    g:=product(1+sinh(x^k/k),k=1..40): gser:=series(g,x=0,25): seq(factorial(n)*coeff(gser,x,n),n=0..21); # Emeric Deutsch, Aug 24 2007
    # second Maple program:
    with(combinat):
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(`if`(j=0 or irem(j, 2)=1, multinomial(n, n-i*j, i$j)
           *(i-1)!^j/j!*b(n-i*j, i-1), 0), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..30);  # Alois P. Heinz, Mar 09 2015
  • Mathematica
    nn = 25; Range[0, nn]!*CoefficientList[Series[Product[1 + Sinh[x^k/k], {k, nn}], {x, 0, nn}], x] (* Vaclav Kotesovec, Mar 20 2016 *)
  • SageMath
    m=40
    def f(x): return product( 1 + sinh(x^j/j) for j in range(1,m+2) )
    def A130263_list(prec):
        P. = PowerSeriesRing(QQ, prec)
        return P( f(x) ).egf_to_ogf().list()
    A130263_list(m) # G. C. Greubel, Mar 18 2023

Formula

E.g.f.: Product_{k>0} (1+sinh(x^k/k)).
a(n) ~ c * n!, where c = A270614 = Product_{k>=1} ((1 + sinh(1/k)) / exp(1/k)) = 0.625635801977949844... . - Vaclav Kotesovec, Mar 20 2016

Extensions

More terms from Emeric Deutsch, Aug 24 2007

A218504 E.g.f.: Product_{n>=1} 1/(1 - tanh(x^n/n)).

Original entry on oeis.org

1, 1, 3, 9, 40, 200, 1286, 9002, 74712, 672408, 6892312, 75815432, 925733216, 12034531808, 170656068480, 2559841027200, 41356302857344, 703057148574848, 12752569691858048, 242298824145302912, 4875886476833445888, 102393616013502363648, 2264106940756915715584
Offset: 0

Views

Author

Paul D. Hanna, Oct 31 2012

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 9*x^3/3! + 40*x^4/4! + 200*x^5/5! +...
where A(x) = 1/((1-tanh(x))*(1-tanh(x^2/2))*(1-tanh(x^3/3))*(1-tanh(x^4/4))*...)
Let G(x) = Product_{n>=1} cosh(x^n/n) be the e.g.f. of A130268:
G(x) = 1 + x^2/2! + 4*x^4/4! + 86*x^6/6! + 2696*x^8/8! + 168232*x^10/10! +...
then e.g.f. A(x) = G(x)/(1-x).
		

Crossrefs

Programs

  • Mathematica
    nn = 25; Range[0, nn]! * CoefficientList[Series[1/(1 - x)*Product[Cosh[x^k/k], {k, 1, nn}], {x, 0, nn}], x] (* Vaclav Kotesovec, Mar 20 2016 *)
  • PARI
    {a(n)=n!*polcoeff(1/prod(k=1, n, (1-tanh(x^k/k+x*O(x^n)))), n)}
    for(n=0,30,print1(a(n),", "))

Formula

E.g.f.: 1/(1-x) * Product_{n>=1} cosh(x^n/n); see A130268.
a(n) ~ c * n!, where c = A249673 = Product_{k>=1} cosh(1/k) = 2.1164655365... . - Vaclav Kotesovec, Nov 03 2014

A270598 E.g.f.: Product_{k>0} (1 + tanh(x^k/k)).

Original entry on oeis.org

1, 1, 1, 3, 14, 70, 364, 2548, 21104, 189936, 1830968, 20140648, 241712272, 3142259536, 43472528384, 652087925760, 10396900456448, 176747307759616, 3162885135453952, 60094817573625088, 1198006583353972736, 25158138250433427456, 551506339507727783936
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 20 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nn=25; Range[0, nn]! * CoefficientList[Series[Product[1+Tanh[x^k/k], {k, 1, nn}], {x, 0, nn}], x]

Formula

E.g.f.: Product_{k>0} exp(x^k/k)/cosh(x^k/k).
a(n) ~ c * n!, where c = 1/A249673 = 1/Product_{k>=1} cosh(1/k) = 0.472485841489...

A270597 E.g.f.: 1/(1-x) * Product_{k>0} (1 + sinh(x^k/k)).

Original entry on oeis.org

1, 2, 5, 21, 98, 575, 3979, 31304, 277248, 2739141, 29898743, 355083014, 4584190984, 63680965127, 949202526375, 15102175351080, 255427113948896, 4573909845546233, 86542053988578763, 1723504067599805402, 36054646740337797072, 790412592781303448523
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 20 2016

Keywords

Crossrefs

Programs

  • Mathematica
    nn=25; Range[0, nn]!*CoefficientList[Series[1/(1-x)*Product[1+Sinh[x^k/k], {k, 1, nn}], {x, 0, nn}], x]

Formula

a(n) ~ n * A130263(n).

A374262 Number of permutations of [n] such that the number of cycles of length k is a multiple of k for every k.

Original entry on oeis.org

1, 1, 1, 1, 4, 16, 46, 106, 316, 3564, 27756, 141516, 556656, 6678816, 73015944, 521124696, 6144018336, 75200767776, 677927254176, 4642387894944, 75217104395136, 1167068528384256, 12348761954020416, 97377968145352896, 882819252604721664, 66882151986021043200
Offset: 0

Views

Author

Alois P. Heinz, Jul 01 2024

Keywords

Examples

			a(4) = 4: (1)(2)(3)(4), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          add(combinat[multinomial](n, i$i*j, n-i^2*j)*
          b(n-i^2*j, i-1)*(i-1)!^(i*j)/(i*j)!, j=0..n/i^2))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);
Showing 1-5 of 5 results.