cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A372545 Number of permutations of [n] such that the number of cycles of length k is a multiple or a divisor of k for every k.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 665, 4655, 37660, 345660, 3373629, 37109919, 443171498, 5761229474, 79709485141, 1199252731963, 19237203662248, 327101074802216, 5848216651372953, 111064609625430747, 2222478622302320382, 46709011248199791062, 1022898268873467547769
Offset: 0

Views

Author

Alois P. Heinz, Jul 04 2024

Keywords

Examples

			a(6) = 665 = 720 - 55 counts all permutations of [6] with the exception of 15 permutations of type (12)(34)(56) and 40 permutations of type (123)(456).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1, add(`if`(
          irem(j, i)=0 or irem(i, j)=0, b(n-i*j, i-1)*(i-1)!^j/j!
          *combinat[multinomial](n, i$j, n-i*j), 0), j=0..n/i))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);

A372579 Number of permutations of [n] such that the number of cycles of length k is zero or equals k for every k.

Original entry on oeis.org

1, 1, 0, 0, 3, 15, 0, 0, 0, 2240, 22400, 0, 0, 4804800, 67267200, 0, 3405402000, 57891834000, 0, 0, 49497518070000, 1039447879470000, 0, 0, 0, 56947245360343962624, 1480628379368943028224, 0, 0, 4057662073660588368847872, 121729862209817651065436160, 0, 0, 0
Offset: 0

Views

Author

Alois P. Heinz, Jul 04 2024

Keywords

Examples

			a(5) = 15 = 5*3: (1)(23)(45), (1)(24)(35), (1)(25)(34), ..., (1,2)(3,4)(5),
  (1,3)(2,4)(5), (1,4)(2,3)(5).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(`if`(j=0 or j=i, b(n-i*j, i-1)*(i-1)!^j/j!*
          combinat[multinomial](n, i$j, n-i*j), 0), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..35);

Formula

a(n) = 0 <=> n in { A001422 }.
a(n) > 0 <=> n in { A003995 }.

A374292 Number of permutations of [n] such that the number of cycles of length k is zero or a divisor of k for every k.

Original entry on oeis.org

1, 1, 1, 5, 17, 89, 474, 3324, 28440, 253448, 2476700, 26876420, 328110540, 4207321260, 58468831680, 877439227560, 14214209548560, 239870470655760, 4285924637475600, 81381169697904720, 1636049164466934000, 34301061146870607600, 750389221227585139200
Offset: 0

Views

Author

Alois P. Heinz, Jul 02 2024

Keywords

Examples

			a(3) = 5: (1)(2,3), (1,2)(3), (1,3)(2), (1,2,3), (1,3,2).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(`if`(j=0 or irem(i, j)=0, b(n-i*j, i-1)*(i-1)!^j/j!*
          combinat[multinomial](n, i$j, n-i*j), 0), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);

A374320 Number of partitions of [n] such that the number of blocks of size k is a multiple of k for every k.

Original entry on oeis.org

1, 1, 1, 1, 4, 16, 46, 106, 316, 1604, 8156, 33716, 125456, 1073216, 10233224, 69873896, 364469561, 2296961801, 19124734801, 147200743489, 960313414036, 6422446261456, 52845891370966, 461844834503746, 3779922654292324, 31131912140021452, 296987899271509252
Offset: 0

Views

Author

Alois P. Heinz, Jul 04 2024

Keywords

Examples

			a(0) = 1: the empty partition.
a(1) = 1: 1.
a(2) = 1: 1|2.
a(3) = 1: 1|2|3.
a(4) = 4: 12|34, 13|24, 14|23, 1|2|3|4.
a(5) = 16: 12|34|5, 12|35|4, 12|3|45, 13|24|5, 13|25|4, 13|2|45, 14|23|5, 15|23|4, 1|23|45, 14|25|3, 14|2|35, 15|24|3, 1|24|35, 15|2|34, 1|25|34, 1|2|3|4|5.
a(9) = 1604: 123|456|789, 123|457|689, 123|458|679, 123|459|678, ..., 1|2|3|49|5|6|78, 1|2|3|4|59|6|78, 1|2|3|4|5|69|78, 1|2|3|4|5|6|7|8|9.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          add(combinat[multinomial](n, i$i*j, n-i^2*j)*
          b(n-i^2*j, i-1)/(i*j)!, j=0..n/i^2))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..28);
Showing 1-4 of 4 results.