cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A374262 Number of permutations of [n] such that the number of cycles of length k is a multiple of k for every k.

Original entry on oeis.org

1, 1, 1, 1, 4, 16, 46, 106, 316, 3564, 27756, 141516, 556656, 6678816, 73015944, 521124696, 6144018336, 75200767776, 677927254176, 4642387894944, 75217104395136, 1167068528384256, 12348761954020416, 97377968145352896, 882819252604721664, 66882151986021043200
Offset: 0

Views

Author

Alois P. Heinz, Jul 01 2024

Keywords

Examples

			a(4) = 4: (1)(2)(3)(4), (1,2)(3,4), (1,3)(2,4), (1,4)(2,3).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          add(combinat[multinomial](n, i$i*j, n-i^2*j)*
          b(n-i^2*j, i-1)*(i-1)!^(i*j)/(i*j)!, j=0..n/i^2))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);

A374319 Number of partitions of [n] such that the number of blocks of size k is zero or a divisor of k for every k.

Original entry on oeis.org

1, 1, 1, 4, 8, 31, 82, 274, 1626, 5135, 26751, 125489, 1020692, 4333707, 31083613, 132960104, 1323145731, 8282668312, 70017330978, 423293287673, 3135764479898, 30762429056580, 269133472001923, 2185746568531948, 15121514389566421, 147045774699171957
Offset: 0

Views

Author

Alois P. Heinz, Jul 04 2024

Keywords

Examples

			a(0) = 1: the empty partition.
a(1) = 1: 1.
a(2) = 1: 12.
a(3) = 4: 123, 12|3, 13|2, 1|23.
a(4) = 8: 1234, 123|4, 124|3, 12|34, 134|2, 13|24, 14|23, 1|234.
a(5) = 31: 12345, 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345, 12|34|5, 12|35|4, 12|3|45, 1345|2, 134|25, 135|24, 13|245, 13|24|5, 13|25|4, 13|2|45, 145|23, 14|235, 14|23|5, 15|234, 1|2345, 15|23|4, 1|23|45, 14|25|3, 14|2|35, 15|24|3, 1|24|35, 15|2|34, 1|25|34.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(`if`(j=0 or irem(i, j)=0, b(n-i*j, i-1)/j!*
          combinat[multinomial](n, i$j, n-i*j), 0), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..27);

A374321 Number of partitions of [n] such that the number of blocks of size k is zero or equals k for every k.

Original entry on oeis.org

1, 1, 0, 0, 3, 15, 0, 0, 0, 280, 2800, 0, 0, 600600, 8408400, 0, 2627625, 44669625, 0, 0, 38192529375, 802043116875, 0, 0, 0, 1508282884484376, 39215354996593776, 0, 0, 107469680368165243128, 3224090411044957293840, 0, 0, 0, 76290792475347121351680
Offset: 0

Views

Author

Alois P. Heinz, Jul 04 2024

Keywords

Examples

			a(0) = 1: the empty partition.
a(1) = 1: 1.
a(4) = 3: 12|34, 13|24, 14|23.
a(5) = 15: 12|34|5, 12|35|4, 12|3|45, 13|24|5, 13|25|4, 13|2|45, 14|23|5, 15|23|4, 1|23|45, 14|25|3, 14|2|35, 15|24|3, 1|24|35, 15|2|34, 1|25|34.
a(9) = 280: 123|456|789, 123|457|689, 123|458|679, 123|459|678, ..., 169|278|345,  178|269|345, 179|268|345, 189|267|345.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
         `if`(i<1, 0, add(`if`(j=0 or j=i, b(n-i*j, i-1)/j!*
          combinat[multinomial](n, i$j, n-i*j), 0), j=0..n/i)))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..35);

Formula

a(n) = 0 <=> n in { A001422 }.
a(n) > 0 <=> n in { A003995 }.

A374329 Number of partitions of [n] such that the number of blocks of size k is a multiple or a divisor of k for every k.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 178, 702, 3160, 15267, 72904, 401139, 2473320, 15932022, 99025826, 641593206, 4570555035, 35589342752, 281312386194, 2198910615580, 17652574088975, 154057648160882, 1437155645037380, 13320654235409156, 121511456568711443, 1135554227462348853
Offset: 0

Views

Author

Alois P. Heinz, Jul 04 2024

Keywords

Examples

			a(6) = 178 = 203 - 25 counts all partitions of [6] with the exception of 123|456, 124|356, 125|346, 126|345, 12|34|56, 12|35|46, 12|36|45, 134|256, 135|246, 136|245, 13|24|56, 13|25|46, 13|26|45, 145|236, 146|235, 14|23|56, 156|234, 15|23|46, 16|23|45, 14|25|36, 14|26|35, 15|24|36, 16|24|35, 15|26|34, 16|25|34.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1, add(
          `if`(irem(j, i)=0 or irem(i, j)=0, b(n-i*j, i-1)/j!*
           combinat[multinomial](n, i$j, n-i*j), 0), j=0..n/i))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..25);
Showing 1-4 of 4 results.