A230842
Values of y such that x^2 + y^2 = 61^n with x and y coprime and 0 < x < y.
Original entry on oeis.org
6, 60, 415, 3479, 27474, 194220, 1752665, 10361041, 108089046, 665045051, 6449019055, 45629658360, 371682946434, 3000926368429, 20605153668425, 190323205453920, 1089586196530086, 11672337637546091, 73603293662217846, 692487869011494600, 5011061854350480605
Offset: 1
a(3)=415 because 234^2+415^2=226981=61^3.
-
Table[Select[PowersRepresentations[61^n, 2, 2], CoprimeQ[#[[1]], #[[2]]] &][[1, 2]], {n, 21}] (* T. D. Noe, Nov 04 2013 *)
A230962
Values of x such that x^2 + y^2 = 73^n with x and y coprime and 0 < x < y.
Original entry on oeis.org
3, 48, 296, 721, 10072, 213785, 1958709, 7613760, 21165597, 894454032, 12278087704, 59926173839, 62518379032, 3374316625735, 58552907681096, 416603004343680, 1261259807092797, 10231862403603888, 255781764375436389, 2697529798981443601, 11543491568219853608
Offset: 1
a(3) = 296 because 296^2 + 549^2 = 389017 = 73^3.
-
f:=n -> min([abs@Re,abs@Im]((3+8*I)^n)):
map(f, [$1..50]); # Robert Israel, Mar 31 2017
-
Table[Select[PowersRepresentations[73^n, 2, 2], CoprimeQ@@#&][[1, 1]], {n, 1, 40}] (* Vincenzo Librandi, Mar 02 2014 *)
Table[Min[Abs[Re[(3 + 8I)^n]], Abs[Im[(3 + 8I)^n]]], {n, 30}] (* Indranil Ghosh, Mar 31 2017, after formula by Robert Israel *)
-
from sympy import I, re, im
print([min(abs(re((3 + 8*I)**n)), abs(im((3 + 8*I)**n))) for n in range(1, 31)]) # Indranil Ghosh, Mar 31 2017, after formula by Robert Israel
Showing 1-2 of 2 results.
Comments