cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A006064 Smallest junction number with n generators.

Original entry on oeis.org

0, 101, 10000000000001, 1000000000000000000000102
Offset: 1

Views

Author

Keywords

Comments

Strictly speaking, a junction number is a number n with more than one solution to x+digitsum(x) = n. However, it seems best to start this sequence with n=0, for which there is just one solution, x=0. - N. J. A. Sloane, Oct 31 2013.
a(3) = 10^13 + 1 was found by Narasinga Rao, who reports that Kaprekar verified that it is the smallest term. No details of Kaprekar's proof were given.
a(4) = 10^24 + 102 was conjectured by Narasinga Rao.
a(5) = 10^1111111111124 + 102. - Conjectured by Narasinga Rao, confirmed by Max Alekseyev and N. J. A. Sloane.
a(6) = 10^2222222222224 + 10000000000002. - Max Alekseyev
a(7) = 10^( (10^24 + 10^13 + 115) / 9 ) + 10^13 + 2. - Max Alekseyev
a(8) = 10^( (2*10^24 + 214)/9 ) + 10^24 + 103. - Max Alekseyev

Examples

			a(2) = 101 since 101 is the smallest number with two generators: 101 = A062028(91) = A062028(100).
a(4) = 10^24 + 102 = 1000000000000000000000102 has exactly four inverses w.r.t. A062028, namely 999999999999999999999893, 999999999999999999999902, 1000000000000000000000091 and 1000000000000000000000100.
		

References

  • M. Gardner, Time Travel and Other Mathematical Bewilderments. Freeman, NY, 1988, p. 116.
  • D. R. Kaprekar, The Mathematics of the New Self Numbers, Privately printed, 311 Devlali Camp, Devlali, India, 1963.
  • Narasinga Rao, A. On a technique for obtaining numbers with a multiplicity of generators. Math. Student 34 1966 79--84 (1967). MR0229573 (37 #5147)
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A003052, A230093, A230100, A230303, A230857 (highest power of 10).
Smallest number m such that u + (sum of base-b digits of u) = m has exactly n solutions, for bases 2 through 10: A230303, A230640, A230638, A230867, A238840, A238841, A238842, A238843, A006064.

Formula

a(n) = the smallest m such that there are exactly n solutions to A062028(x)=m.

Extensions

Edited, a(5)-a(6) added by Max Alekseyev, Jun 01 2011
a(1) added, a(5) corrected, a(7)-a(8) added by Max Alekseyev, Oct 26 2013

A107740 Number of numbers m such that prime(n) = m + (digit sum of m).

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 2, 2, 1, 1, 0, 1, 1, 0, 1
Offset: 1

Views

Author

Reinhard Zumkeller, May 23 2005

Keywords

Comments

a(A049084(A006378(n))) = 0; a(A049084(A048521(n))) > 0. [Corrected by Reinhard Zumkeller, Sep 27 2014]
a(n) <= 2 for n <= 10^5. Conjecture: sequence is bounded.
I would rather conjecture the opposite. Of course a(n) >= m implies n >= A006064(m), having more than A230857(m) digits, i.e., 14, 25 and 1111111111125 digits of n, for a(n) = 3, 4, 5. - M. F. Hasler, Nov 09 2018

Examples

			A000040(26) = 101 = 91 + (9 + 1) = 100 + (1 + 0 + 0): a(26) = # {91, 100} = 2.
		

Crossrefs

Programs

  • Haskell
    a107740 n = length [() | let p = a000040 n,
                             m <- [max 0 (p - 9 * a055642 p) .. p - 1],
                             a062028 m == p]
    -- Reinhard Zumkeller, Sep 27 2014
    
  • Mathematica
    Table[p=Prime[n];c=0;i=1;While[iJayanta Basu, May 03 2013 *)
  • PARI
    apply( A107740(n)=A230093(prime(n)), [1..150]) \\ M. F. Hasler, Nov 08 2018

Formula

a(n) = A230093(prime(n)), i.e.: A107740 = A230093 o A000040. - M. F. Hasler, Nov 08 2018
Showing 1-2 of 2 results.