cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A230960 Boustrophedon transform of factorials, cf. A000142.

Original entry on oeis.org

1, 2, 5, 17, 73, 381, 2347, 16701, 134993, 1222873, 12279251, 135425553, 1627809401, 21183890469, 296773827547, 4453511170517, 71275570240417, 1211894559430065, 21816506949416611, 414542720924028441, 8291224789668806345, 174120672081098057341
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 05 2013

Keywords

Crossrefs

Programs

  • Haskell
    a230960 n = sum $ zipWith (*) (a109449_row n) a000142_list
    
  • Mathematica
    T[n_, k_] := (n!/k!) SeriesCoefficient[(1 + Sin[x])/Cos[x], {x, 0, n - k}];
    a[n_] := Sum[T[n, k] k!, {k, 0, n}];
    Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jul 02 2019 *)
  • Python
    from itertools import count, islice, accumulate
    def A230960_gen(): # generator of terms
        blist, m = tuple(), 1
        for i in count(1):
            yield (blist := tuple(accumulate(reversed(blist),initial=m)))[-1]
            m *= i
    A230960_list = list(islice(A230960_gen(),30)) # Chai Wah Wu, Jun 11 2022

Formula

a(n) = Sum_{k=0..n} A109449(n,k)*A000142(k).
E.g.f.: (tan(x)+sec(x))/(1-x) = (1- 12*x/(Q(0)+6*x+3*x^2))/(1-x), where Q(k) = 2*(4*k+1)*(32*k^2+16*k-x^2-6) - x^4*(4*k-1)*(4*k+7)/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Nov 18 2013
a(n) ~ n! * (1+sin(1))/cos(1). - Vaclav Kotesovec, Jun 12 2015
a(n) = Sum_{k=0..n} (k+1) * A092580(n,k). - Alois P. Heinz, Apr 27 2023