A231000 Number of years after which a date can fall on the same day of the week, in the Julian calendar.
0, 5, 6, 11, 17, 22, 23, 28, 33, 34, 39, 45, 50, 51, 56, 61, 62, 67, 73, 78, 79, 84, 89, 90, 95, 101, 106, 107, 112, 117, 118, 123, 129, 134, 135, 140, 145, 146, 151, 157, 162, 163, 168, 173, 174, 179, 185, 190, 191, 196, 201, 202, 207, 213, 218, 219, 224, 229, 230, 235
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Time And Date, Repeating Calendar
- Time And Date, Julian Calendar
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,1,-1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 60); [0] cat Coefficients(R!( x*(1-x+x^2)*(5+6*x+6*x^2+6*x^3+5*x^4)/((1-x)^2*(1+x+x^2+x^3+x^4+x^5+x^6)) )); // Marius A. Burtea, Oct 17 2019 -
PARI
for(i=0,420,for(y=0,420,if(((5*(y\4)+(y%4))%7)==((5*((y+i)\4)+((y+i)%4))%7),print1(i", ");break)))
-
PARI
concat(0, Vec(x*(1 - x + x^2)*(5 + 6*x + 6*x^2 + 6*x^3 + 5*x^4) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)) + O(x^40))) \\ Colin Barker, Oct 17 2019
Formula
From Colin Barker, Oct 17 2019: (Start)
G.f.: x*(1 - x + x^2)*(5 + 6*x + 6*x^2 + 6*x^3 + 5*x^4) / ((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)).
a(n) = a(n-1) + a(n-7) - a(n-8) for n>7.
(End)
Comments