A231002 Number of years after which it is possible to have a date falling on same day of the week, but the entire year does not have the same calendar, in the Julian calendar.
5, 23, 33, 51, 61, 79, 89, 107, 117, 135, 145, 163, 173, 191, 201, 219, 229, 247, 257, 275, 285, 303, 313, 331, 341, 359, 369, 387, 397, 415, 425, 443, 453, 471, 481, 499, 509, 527, 537, 555, 565, 583, 593, 611, 621, 639, 649, 667, 677, 695, 705, 723, 733, 751, 761, 779, 789
Offset: 1
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Time And Date, Repeating Calendar
- Time And Date, Julian Calendar
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Mathematica
LinearRecurrence[{1,1,-1},{5,23,33},70] (* Harvey P. Dale, May 21 2021 *)
-
PARI
for(i=0,420,j=0;for(y=0,420,if(((5*(y\4)+(y%4))%7)==((5*((y+i)\4)+((y+i)%4))%7),j=1;break));for(y=0,420,if(((5*(y\4)+(y%4))%7)==((5*((y+i)\4)+((y+i)%4))%7)&&((5*(y\4)+(y%4)-!(y%4))%7)==((5*((y+i)\4)+((y+i)%4)-!((y+i)%4))%7),j=2;break));if(j==1,print1(i", ")))
-
PARI
A231002(n) = n\2*28-5*(-1)^n \\ M. F. Hasler, Apr 14 2015
-
PARI
Vec(x*(5 + 18*x + 5*x^2) / ((1 - x)^2*(1 + x)) + O(x^50)) \\ Colin Barker, Oct 15 2019
Formula
a(n+1) = a(n-1)+28, for all n > 1. - M. F. Hasler, Apr 14 2015
a(2n) = 28n-5 (n>0), a(2n+1) = 28n+5 (n>=0), a(n) = 28*floor(n/2)-5*(-1)^n. - M. F. Hasler, Apr 14 2015
From Colin Barker, Oct 15 2019: (Start)
G.f.: x*(5 + 18*x + 5*x^2) / ((1 - x)^2*(1 + x)).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3.
a(n) = -7 + 2*(-1)^n + 14*n.
(End)
Comments