cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231002 Number of years after which it is possible to have a date falling on same day of the week, but the entire year does not have the same calendar, in the Julian calendar.

Original entry on oeis.org

5, 23, 33, 51, 61, 79, 89, 107, 117, 135, 145, 163, 173, 191, 201, 219, 229, 247, 257, 275, 285, 303, 313, 331, 341, 359, 369, 387, 397, 415, 425, 443, 453, 471, 481, 499, 509, 527, 537, 555, 565, 583, 593, 611, 621, 639, 649, 667, 677, 695, 705, 723, 733, 751, 761, 779, 789
Offset: 1

Views

Author

Aswini Vaidyanathan, Nov 02 2013

Keywords

Comments

In the Julian calendar, a year is a leap year if and only if it is a multiple of 4 and all century years are leap years.
Assuming this fact, this sequence is periodic with a period of 28.
These are the terms of A231000 not in A231001.
The statement about the period is misleading: this is the sequence of (positive) numbers congruent to 5 or -5 (mod 28). It is strictly increasing, not periodic; the sequence a(n) - 28*floor(n/2) is 2-periodic. - M. F. Hasler, Apr 14 2015

Crossrefs

Cf. A230997 (Gregorian calendar).

Programs

  • Mathematica
    LinearRecurrence[{1,1,-1},{5,23,33},70] (* Harvey P. Dale, May 21 2021 *)
  • PARI
    for(i=0,420,j=0;for(y=0,420,if(((5*(y\4)+(y%4))%7)==((5*((y+i)\4)+((y+i)%4))%7),j=1;break));for(y=0,420,if(((5*(y\4)+(y%4))%7)==((5*((y+i)\4)+((y+i)%4))%7)&&((5*(y\4)+(y%4)-!(y%4))%7)==((5*((y+i)\4)+((y+i)%4)-!((y+i)%4))%7),j=2;break));if(j==1,print1(i", ")))
    
  • PARI
    A231002(n) = n\2*28-5*(-1)^n \\ M. F. Hasler, Apr 14 2015
    
  • PARI
    Vec(x*(5 + 18*x + 5*x^2) / ((1 - x)^2*(1 + x)) + O(x^50)) \\ Colin Barker, Oct 15 2019

Formula

a(n+1) = a(n-1)+28, for all n > 1. - M. F. Hasler, Apr 14 2015
a(2n) = 28n-5 (n>0), a(2n+1) = 28n+5 (n>=0), a(n) = 28*floor(n/2)-5*(-1)^n. - M. F. Hasler, Apr 14 2015
From Colin Barker, Oct 15 2019: (Start)
G.f.: x*(5 + 18*x + 5*x^2) / ((1 - x)^2*(1 + x)).
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3.
a(n) = -7 + 2*(-1)^n + 14*n.
(End)