cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A306769 Decimal expansion of Sum_{k>=2} (-1)^k * Zeta(k)^2 / k.

Original entry on oeis.org

1, 0, 4, 3, 4, 0, 2, 9, 1, 7, 5, 7, 4, 2, 8, 8, 7, 3, 3, 2, 5, 5, 2, 8, 9, 6, 4, 6, 6, 7, 1, 6, 7, 6, 0, 3, 0, 5, 4, 8, 4, 7, 0, 8, 6, 6, 0, 4, 6, 8, 8, 2, 5, 6, 1, 0, 4, 4, 5, 7, 0, 4, 7, 9, 7, 6, 9, 5, 8, 5, 0, 6, 2, 5, 5, 2, 5, 2, 4, 8, 4, 3, 2, 7, 6, 1, 5, 1, 0, 7, 2, 0, 7, 9, 8, 4, 1, 4, 3, 5, 6, 2, 1, 4, 6
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 09 2019

Keywords

Comments

Sum_{k>=2} (-1)^k*Zeta(k)/k = A001620 (see MathWorld, formula 122).

Examples

			1.043402917574288733255289646671676030548470866046882561044570479769585...
		

Crossrefs

Programs

  • Maple
    evalf(Sum((-1)^j*Zeta(j)^2/j, j=2..infinity), 100);
  • Mathematica
    NSum[(-1)^k*Zeta[k]^2/k, {k, 2, Infinity}, WorkingPrecision -> 200, NSumTerms -> 100000]
  • PARI
    sumalt(k=2, (-1)^k*zeta(k)^2/k) \\ Michel Marcus, Mar 09 2019

Formula

Equals log(A306765) + A001620^2.

A306765 Decimal expansion of lim_{k->oo} (k^A001620 / k!) * Product_{j=1..k} Gamma(1/j).

Original entry on oeis.org

2, 0, 3, 4, 4, 4, 8, 9, 4, 5, 4, 8, 7, 6, 1, 6, 4, 7, 7, 9, 8, 0, 3, 5, 5, 5, 3, 1, 8, 8, 6, 9, 0, 2, 6, 3, 5, 5, 9, 7, 9, 4, 3, 9, 8, 6, 3, 7, 0, 2, 3, 7, 6, 2, 6, 0, 0, 0, 5, 2, 8, 4, 1, 6, 5, 6, 5, 0, 0, 7, 8, 2, 7, 7, 5, 7, 1, 1, 3, 2, 4, 4, 5, 0, 2, 6, 5, 0, 4, 0, 6, 1, 3, 5, 0, 7, 5, 0, 2, 9, 1, 2, 7, 1, 4
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 08 2019

Keywords

Examples

			2.0344489454876164779803555318869026355979439863702376260005284165650078277571...
		

Crossrefs

Programs

  • Maple
    evalf(exp(-gamma^2 + Sum((-1)^j*Zeta(j)^2/j, j=2..infinity)), 100);
  • Mathematica
    slogam = Table[Sum[LogGamma[1/j], {j, 1, n}], {n, 1, 1000}]; $MaxExtraPrecision = 1000; funs[n_] := E^slogam[[n]] * n^EulerGamma/n!; Do[Print[N[Sum[(-1)^(m + j) * funs[j*Floor[Length[slogam]/m]] * (j^(m - 1)/(j - 1)!/(m - j)!), {j, 1, m}], 80]], {m, 10, 100, 10}]
  • PARI
    exp(-Euler^2 + sumalt(j=2, (-1)^j*zeta(j)^2/j))

Formula

Equals exp(-gamma^2 + Sum_{j>=2} (-1)^j*Zeta(j)^2/j), where gamma is the Euler-Mascheroni constant A001620.
Equals exp(-gamma^2 + A306769).
Equals lim_{k->oo} k^(k*(2*k+1) + 2*gamma) * (2*Pi)^k * exp(1/6 + log(k)^2 - 2*k^2) / A306760(k).

A365959 Decimal expansion of Sum_{k>=2} zeta(k)/k^2.

Original entry on oeis.org

8, 3, 5, 9, 9, 8, 3, 3, 2, 7, 0, 0, 9, 6, 4, 3, 2, 2, 9, 7, 0, 9, 1, 1, 1, 9, 8, 6, 9, 6, 0, 2, 9, 0, 9, 6, 4, 2, 7, 0, 4, 2, 1, 6, 8, 0, 9, 3, 2, 3, 3, 2, 4, 8, 3, 2, 9, 5, 5, 6, 3, 4, 9, 2, 5, 7, 7, 0, 1, 8, 9, 5, 2, 5, 3, 1, 7, 3, 8, 8, 4, 0, 0, 2, 1, 9, 2, 2, 7, 6, 8, 8, 7, 7, 6, 6, 2, 2, 3, 2, 5, 7, 7, 8, 5, 5
Offset: 0

Views

Author

Vaclav Kotesovec, Sep 23 2023

Keywords

Examples

			0.835998332700964322970911198696029096427042168093233248329556349257701895253...
		

Crossrefs

Programs

  • PARI
    sumpos(k=2,zeta(k)/k^2)

Formula

Equals Sum_{k>=1} (polylog(2, 1/k) - 1/k).
From Velin Yanev, Jul 30 2025: (Start)
Equals Integral_{x=0..1} log(Gamma(1 - x))/x dx - A001620. [Proved by Paul Enta, 2020]
Conjecture: Equals 2 - A001620 - Pi^2/12 + Integral_{x=0..oo} (2*x*arccot(x) - log(1/x^2 + 1))*log(1 - exp(-2*Pi*x))/(2*Pi*(x^2 + 1)) dx. (End)
Showing 1-3 of 3 results.