A231200 Boustrophedon transform of even numbers.
0, 2, 8, 24, 72, 240, 924, 4116, 20944, 119952, 763540, 5346748, 40845816, 338041704, 3012855356, 28770647220, 293055401888, 3171602665696, 36343889387172, 439607533130732, 5597256953340360, 74829813397495128, 1048039052970587788, 15345654816688856484
Offset: 0
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..400
- Peter Luschny, An old operation on sequences: the Seidel transform
- J. Millar, N. J. A. Sloane and N. E. Young, A new operation on sequences: the Boustrophedon transform, J. Combin. Theory, 17A 44-54 1996 (Abstract, pdf, ps).
- Wikipedia, Boustrophedon_transform
- Index entries for sequences related to boustrophedon transform
Programs
-
Haskell
a231200 n = sum $ zipWith (*) (a109449_row n) $ [0, 2 ..]
-
Mathematica
T[n_, k_] := SeriesCoefficient[(1+Sin[x])/Cos[x], {x, 0, n-k}] n!/k!; a[n_] := 2 Sum[k T[n, k], {k, 0, n}]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jun 28 2019 *)
-
Python
from itertools import accumulate, count, islice def A231200_gen(): # generator of terms blist = tuple() for i in count(0,2): yield (blist := tuple(accumulate(reversed(blist),initial=i)))[-1] A231200_list = list(islice(A231200_gen(),40)) # Chai Wah Wu, Jun 12 2022
Formula
a(n) = Sum_{k=0..n} A109449(n,k)*k*2.
a(n) = 2*A231179(n).
E.g.f.: 2*x*exp(x)*(sec(x) + tan(x)). - Ilya Gutkovskiy, Sep 27 2017