cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231234 Denominators related to A206771 and Lorentz gamma factor.

Original entry on oeis.org

1, 1, 1, 8, 4, 128, 128, 1024, 256, 32768, 32768, 262144, 131072, 4194304, 4194304, 33554432, 4194304, 2147483648, 2147483648, 17179869184, 8589934592, 274877906944, 274877906944, 2199023255552, 549755813888, 70368744177664
Offset: 0

Views

Author

Keywords

Comments

See A206771.
In addition, it can be noticed that a(n) is always a power of 2 and that a(2n-1)/a(2n) is A006519(n).

Crossrefs

Programs

  • Mathematica
    max = 25; A001803 = CoefficientList[Series[(1 - x)^(-3/2), {x, 0, max}], x] // Numerator; A001790 = CoefficientList[Series[1/Sqrt[(1 - x)], {x, 0, max}], x] // Numerator; A046161 = Table[Binomial[2 n, n]/4^n, {n, 0, max}] // Denominator; a[0] = 1;  a[n_] := (A001803[[n]] + A001790[[n]])/(2*A046161[[n]]) // Denominator; Table[a[n], {n, 0, max}]
    (* or, directly: *) a[0] = 1; a[n_] := Denominator[4^(1-n)*Binomial[2*n-2, n-1]]/2^IntegerExponent[n, 2]; Table[a[n], {n, 0, max}]

Formula

a(n) = denominator(4^(1-n)*binomial(2*n-2, n-1))/2^valuation(n, 2) (where valuation(n,2) = A007814(n)).
a(n) = 2^(2*n-2-adic valuation(n, 2)-valuation(binomial(2*n-2, n-1), 2)).
a(n) = A046161(n-1)/A006519(n).