cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231303 Recurrence a(n) = a(n-2) + n^M for M=4, starting with a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 16, 82, 272, 707, 1568, 3108, 5664, 9669, 15664, 24310, 36400, 52871, 74816, 103496, 140352, 187017, 245328, 317338, 405328, 511819, 639584, 791660, 971360, 1182285, 1428336, 1713726, 2042992, 2421007, 2852992, 3344528, 3901568, 4530449, 5237904
Offset: 0

Views

Author

Stanislav Sykora, Nov 07 2013

Keywords

Comments

In physics, a(n)/2^(M-1) is the trace of the spin operator |S_z|^M for a particle with spin S=n/2. For example, when S=3/2, the S_z eigenvalues are -3/2, -1/2, +1/2, +3/2 and therefore the sum of their 4th powers is 2*82/16 = a(3)/8 (analogously for other values of M).
Partial sums of A062392. - Bruce J. Nicholson, Jun 29 2019

Examples

			a(4) = 4^4 + 2^4 = 272; a(5) = 5^4 + 3^4 + 1^4 = 707.
		

Crossrefs

Cf. A001477 (M=1), A000292 (M=2), A105636 (M=3), A231304 (M=5), A231305 (M=6), A231306 (M=7), A231307 (M=8), A231308 (M=9), A231309 (M=10).

Programs

  • GAP
    List([0..40], n-> n*(3*n^4+15*n^3+20*n^2-8)/30); # G. C. Greubel, Jul 01 2019
  • Magma
    [1/30*n*(3*n^4+15*n^3+20*n^2-8): n in [0..40]]; // Vincenzo Librandi, Dec 23 2015
    
  • Mathematica
    Table[SeriesCoefficient[x*(1+10*x+x^2)/(1-x)^6, {x, 0, n}], {n, 0, 40}] (* Michael De Vlieger, Dec 22 2015 *)
    LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 16, 82, 272, 707}, 40] (* Vincenzo Librandi, Dec 23 2015 *)
  • PARI
    nmax=40;a = vector(nmax);a[2]=1;for(i=3,#a,a[i]=a[i-2]+(i-1)^4); print(a);
    
  • PARI
    concat(0, Vec(x*(1+10*x+x^2)/(1-x)^6 + O(x^40))) \\ Colin Barker, Dec 22 2015
    
  • Sage
    [n*(3*n^4+15*n^3+20*n^2-8)/30 for n in (0..40)] # G. C. Greubel, Jul 01 2019
    

Formula

a(n) = Sum_{k=0..floor(n/2)} (n - 2*k)^4.
From Colin Barker, Dec 22 2015: (Start)
a(n) = (1/30)*n*(3*n^4 + 15*n^3 + 20*n^2 - 8).
G.f.: x*(1 + 10*x + x^2) / (1-x)^6.
(End)
E.g.f.: x*(30 + 210*x + 185*x^2 + 45*x^3 + 3*x^4)*exp(x)/30. - G. C. Greubel, Apr 24 2016
From Bruce J. Nicholson, Jun 29 2019: (Start)
a(n) = 12*A000389(n+3) + A000292(n);
a(n) = (12*A000579(n+4)+A000332(n+3)) - (12*A000579(n+3)+A000332(n+2));
a(n) - a(n-2) = A000583(n). (End)