A231303 Recurrence a(n) = a(n-2) + n^M for M=4, starting with a(0)=0, a(1)=1.
0, 1, 16, 82, 272, 707, 1568, 3108, 5664, 9669, 15664, 24310, 36400, 52871, 74816, 103496, 140352, 187017, 245328, 317338, 405328, 511819, 639584, 791660, 971360, 1182285, 1428336, 1713726, 2042992, 2421007, 2852992, 3344528, 3901568, 4530449, 5237904
Offset: 0
Examples
a(4) = 4^4 + 2^4 = 272; a(5) = 5^4 + 3^4 + 1^4 = 707.
Links
- Stanislav Sykora, Table of n, a(n) for n = 0..9999
- Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
- Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1).
Crossrefs
Programs
-
GAP
List([0..40], n-> n*(3*n^4+15*n^3+20*n^2-8)/30); # G. C. Greubel, Jul 01 2019
-
Magma
[1/30*n*(3*n^4+15*n^3+20*n^2-8): n in [0..40]]; // Vincenzo Librandi, Dec 23 2015
-
Mathematica
Table[SeriesCoefficient[x*(1+10*x+x^2)/(1-x)^6, {x, 0, n}], {n, 0, 40}] (* Michael De Vlieger, Dec 22 2015 *) LinearRecurrence[{6, -15, 20, -15, 6, -1}, {0, 1, 16, 82, 272, 707}, 40] (* Vincenzo Librandi, Dec 23 2015 *)
-
PARI
nmax=40;a = vector(nmax);a[2]=1;for(i=3,#a,a[i]=a[i-2]+(i-1)^4); print(a);
-
PARI
concat(0, Vec(x*(1+10*x+x^2)/(1-x)^6 + O(x^40))) \\ Colin Barker, Dec 22 2015
-
Sage
[n*(3*n^4+15*n^3+20*n^2-8)/30 for n in (0..40)] # G. C. Greubel, Jul 01 2019
Formula
a(n) = Sum_{k=0..floor(n/2)} (n - 2*k)^4.
From Colin Barker, Dec 22 2015: (Start)
a(n) = (1/30)*n*(3*n^4 + 15*n^3 + 20*n^2 - 8).
G.f.: x*(1 + 10*x + x^2) / (1-x)^6.
(End)
E.g.f.: x*(30 + 210*x + 185*x^2 + 45*x^3 + 3*x^4)*exp(x)/30. - G. C. Greubel, Apr 24 2016
From Bruce J. Nicholson, Jun 29 2019: (Start)
a(n) - a(n-2) = A000583(n). (End)
Comments