A231335 Number of distinct Fibonacci numbers in rows of triangle A230871.
1, 1, 2, 2, 3, 3, 3, 4, 3, 3, 5, 4, 3, 4, 6, 4, 5, 4, 5, 6, 5, 4, 6, 7, 4, 5
Offset: 0
Examples
a(0) = #{0} = 1; a(1) = #{1} = 1; a(2) = #{1, 3} = 2; a(3) = #{2, 8} = 2; a(4) = #{3, 5, 21} = 3; a(5) = #{5, 13, 55} = 3; a(6) = #{8, 34, 144} = 3; a(7) = #{13, 55, 89, 377} = 4; a(8) = #{21, 233, 987} = 3; a(9) = #{34, 610, 2584} = 3; a(10) = #{55, 89, 377, 1597, 6765} = 5; a(11) = #{89, 377, 4181, 17711} = 4; a(12) = #{144, 10946, 46368} = 3; a(13) = #{233, 1597, 28657, 121393} = 4; a(14) = #{377, 987, 1597, 6765, 75025, 317811} = 6; a(15) = #{610, 10946, 196418, 832040} = 4; a(16) = #{987, 4181, 6765, 514229, 2178309} = 5.
Programs
-
Haskell
a231335 = length . filter ((== 1) . a010056) . a231330_row
-
PARI
isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || issquare(k-8); vf(v) = #select(isfib, Set(v)); lista(nn) = my(va=[0], vb=[1]); print1(vf(va), ", "); print1(vf(vb), ", "); for (n=2, nn, v = vector(2^(n-1), k, j=(k+1)\2; i=(j+1)\2; y=vb[j]; x=va[i]; if (k%2, y+x, 3*y-x)); print1(vf(v), ", "); va = vb; vb = v;); \\ Michel Marcus, Sep 23 2023
Extensions
a(19)-a(25) from Michel Marcus, Sep 23 2023
Comments