A231371 Squarefree composite numbers k such that 8 is a primitive root for all prime factors of k.
15, 33, 55, 87, 145, 159, 165, 177, 249, 265, 295, 303, 319, 321, 393, 415, 435, 447, 505, 519, 535, 537, 583, 591, 649, 655, 681, 745, 795, 807, 865, 879, 885, 895, 913, 951, 957, 985, 1041, 1111, 1135, 1167, 1177, 1245, 1257, 1329, 1345, 1383, 1401, 1441
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Primitive Root.
- Wikipedia, Octal.
Programs
-
Mathematica
q[n_] := CompositeQ[n] && SquareFreeQ[n] && AllTrue[FactorInteger[n][[;;,1]], MultiplicativeOrder[8, #] == # - 1 &]; Select[Range[1441], q] (* Amiram Eldar, Oct 03 2021 *)
Comments