A231370 Squarefree composite numbers k such that 2 is a primitive root for all prime factors of k.
15, 33, 39, 55, 57, 65, 87, 95, 111, 143, 145, 159, 165, 177, 183, 185, 195, 201, 209, 247, 249, 265, 285, 295, 303, 305, 319, 321, 335, 377, 393, 407, 415, 417, 429, 435, 447, 481, 489, 505, 519, 535, 537, 543, 551, 555, 583, 591, 627, 633, 649, 655, 671, 681
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Primitive Root.
- Wikipedia, Binary number.
Programs
-
Mathematica
q[n_] := CompositeQ[n] && SquareFreeQ[n] && AllTrue[FactorInteger[n][[;;,1]], MultiplicativeOrder[2, #] == # - 1 &]; Select[Range[700], q] (* Amiram Eldar, Oct 03 2021 *)
-
PARI
isok(k) = if ((k>1) && (k%2) && !isprime(k) && issquarefree(k), my(f=factor(k)[,1]~); for (j=1, #f, if (znorder(Mod(2, f[j])) != (f[j]-1), return(0))); return (1)); return (0); \\ Michel Marcus, Oct 03 2021
Comments