cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A231383 Primes p such that p + 3*k is also prime, where p is k-th prime.

Original entry on oeis.org

2, 7, 13, 19, 29, 37, 53, 71, 101, 107, 131, 139, 163, 173, 181, 199, 223, 229, 263, 281, 293, 311, 337, 397, 443, 463, 491, 557, 569, 659, 673, 719, 733, 787, 809, 827, 839, 857, 953, 983, 1013, 1069, 1091, 1109, 1151, 1223, 1249, 1283, 1307, 1451, 1493, 1549
Offset: 1

Views

Author

K. D. Bajpai, Nov 08 2013

Keywords

Examples

			a(5)= 29 which is 10th prime.  prime(10)+3*10= 29+30= 59 which is also prime.
a(7)= 53 which is 16th prime.  prime(16)+3*16= 53+48= 101 which is also prime.
		

Crossrefs

Cf. A061068 (primes: prime(m) plus its subscript).
Cf. A064402 (numbers n: prime(n)+n is prime).
Cf. A231232 (primes p : p+2*k is also prime).

Programs

  • Magma
    [NthPrime(n): n in [1..250] | IsPrime(NthPrime(n)+3*n)]; // Vincenzo Librandi, Jan 19 2015
  • Maple
    KD := proc() local a, b;  a:= ithprime(n); b:= a+3*n; if isprime(b) then RETURN (a); fi; end: seq(KD(), n=1..500);
  • Mathematica
    KD = Select[Table[{Prime[n], Prime[n] + 3*n}, {n, 200}], PrimeQ[#[[2]]] &]; Transpose[KD][[1]]
  • PARI
    is(n)=isprime(n) && isprime(n+3*primepi(n)) \\ Charles R Greathouse IV, Nov 08 2013