cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A360189 Triangle T(n,k), n>=0, 0<=k<=floor(log_2(n+1)), read by rows: T(n,k) = number of nonnegative integers <= n having binary weight k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 3, 2, 1, 3, 3, 1, 3, 3, 1, 1, 4, 3, 1, 1, 4, 4, 1, 1, 4, 5, 1, 1, 4, 5, 2, 1, 4, 6, 2, 1, 4, 6, 3, 1, 4, 6, 4, 1, 4, 6, 4, 1, 1, 5, 6, 4, 1, 1, 5, 7, 4, 1, 1, 5, 8, 4, 1, 1, 5, 8, 5, 1, 1, 5, 9, 5, 1, 1, 5, 9, 6, 1, 1, 5, 9, 7, 1
Offset: 0

Views

Author

Alois P. Heinz, Mar 04 2023

Keywords

Comments

T(n,k) is defined for all n >= 0 and k >= 0. Terms that are not in the triangle are zero.

Examples

			T(6,2) = 3: 3, 5, 6, or in binary: 11_2, 101_2, 110_2.
T(15,3) = 4: 7, 11, 13, 14, or in binary: 111_2, 1011_2, 1101_2, 1110_2.
Triangle T(n,k) begins:
  1;
  1, 1;
  1, 2;
  1, 2, 1;
  1, 3, 1;
  1, 3, 2;
  1, 3, 3;
  1, 3, 3, 1;
  1, 4, 3, 1;
  1, 4, 4, 1;
  1, 4, 5, 1;
  1, 4, 5, 2;
  1, 4, 6, 2;
  1, 4, 6, 3;
  1, 4, 6, 4;
  1, 4, 6, 4, 1;
  ...
		

Crossrefs

Columns k=0-2 give: A000012, A029837(n+1) = A113473(n) for n>0, A340068(n+1).
Last elements of rows give A090996(n+1).

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<0, 0,
          b(n-1)+x^add(i, i=Bits[Split](n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n)):
    seq(T(n), n=0..23);
  • PARI
    T(n,k) = my(v1); v1 = Vecrev(binary(n+1)); v1 = Vecrev(select(x->(x>0),v1,1)); sum(j=0, min(k,#v1-1), binomial(v1[j+1]-1,k-j)) \\ Mikhail Kurkov, Nov 27 2024

Formula

T(n,k) = T(n-1,k) + [A000120(n) = k] where [] is the Iverson bracket and T(n,k) = 0 for n<0.
T(2^n-1,k) = A007318(n,k) = binomial(n,k).
T(n,floor(log_2(n+1))) = A090996(n+1).
Sum_{k>=0} T(n,k) = n+1.
Sum_{k>=0} k * T(n,k) = A000788(n).
Sum_{k>=0} k^2 * T(n,k) = A231500(n).
Sum_{k>=0} k^3 * T(n,k) = A231501(n).
Sum_{k>=0} k^4 * T(n,k) = A231502(n).
Sum_{k>=0} 2^k * T(n,k) = A006046(n+1).
Sum_{k>=0} 3^k * T(n,k) = A130665(n).
Sum_{k>=0} 4^k * T(n,k) = A116520(n+1).
Sum_{k>=0} 5^k * T(n,k) = A130667(n+1).
Sum_{k>=0} 6^k * T(n,k) = A116522(n+1).
Sum_{k>=0} 7^k * T(n,k) = A161342(n+1).
Sum_{k>=0} 8^k * T(n,k) = A116526(n+1).
Sum_{k>=0} 10^k * T(n,k) = A116525(n+1).
Sum_{k>=0} n^k * T(n,k) = A361257(n).
T(n,k) = Sum_{j=0..min(k, A000120(n+1)-1)} binomial(A272020(n+1,j+1)-1,k-j) for n >= 0, k >= 0 (see Peter J. Taylor link). - Mikhail Kurkov, Nov 27 2024

A231500 a(n) = Sum_{i=0..n} wt(i)^2, where wt(i) = A000120(i).

Original entry on oeis.org

0, 1, 2, 6, 7, 11, 15, 24, 25, 29, 33, 42, 46, 55, 64, 80, 81, 85, 89, 98, 102, 111, 120, 136, 140, 149, 158, 174, 183, 199, 215, 240, 241, 245, 249, 258, 262, 271, 280, 296, 300, 309, 318, 334, 343, 359, 375, 400, 404, 413, 422, 438, 447, 463, 479, 504, 513, 529, 545, 570, 586, 611, 636, 672, 673, 677, 681, 690, 694
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2013

Keywords

Comments

Stolarsky (1977) has an extensive bibliography.

Crossrefs

Programs

  • Maple
    digsum:=proc(n,B) local a; a := convert(n, base, B):
    add(a[i], i=1..nops(a)): end;
    f:=proc(n,k,B) global digsum; local i;
    add( digsum(i,B)^k,i=0..n); end;
    [seq(f(n,1,2),n=0..100)]; #A000788
    [seq(f(n,2,2),n=0..100)]; #A231500
    [seq(f(n,3,2),n=0..100)]; #A231501
    [seq(f(n,4,2),n=0..100)]; #A231502
  • Mathematica
    FoldList[#1 + DigitCount[#2, 2, 1]^2 &, 0, Range[1, 68]] (* Ivan Neretin, May 21 2015 *)
  • PARI
    a(n) = sum(i=0, n, hammingweight(i)^2); \\ Michel Marcus, Sep 20 2017

Formula

Stolarsky (1977) studies the asymptotics.
a(n) ~ n * (log(n)/(2*log(2)))^2 + O(n*log(n)) (Stolarsky, 1977). - Amiram Eldar, Jan 20 2022
a(n) = Sum_{k=0..floor(log_2(n+1))} k^2 * A360189(n,k). - Alois P. Heinz, Mar 06 2023

A231501 a(n) = Sum_{i=0..n} wt(i)^3, where wt() = A000120().

Original entry on oeis.org

0, 1, 2, 10, 11, 19, 27, 54, 55, 63, 71, 98, 106, 133, 160, 224, 225, 233, 241, 268, 276, 303, 330, 394, 402, 429, 456, 520, 547, 611, 675, 800, 801, 809, 817, 844, 852, 879, 906, 970, 978, 1005, 1032, 1096, 1123, 1187, 1251, 1376, 1384, 1411, 1438, 1502, 1529, 1593, 1657, 1782, 1809, 1873, 1937, 2062, 2126, 2251
Offset: 0

Views

Author

N. J. A. Sloane, Nov 12 2013

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate @ (Table[DigitCount[n, 2, 1], {n, 0, 60}]^3) (* Amiram Eldar, Jan 20 2022 *)
  • PARI
    a(n) = sum(i=0, n, hammingweight(i)^3); \\ Michel Marcus, Sep 20 2017

Formula

a(n) ~ n * (log(n)/(2*log(2)))^3 + O(n*log(n)^2) (Stolarsky, 1977). - Amiram Eldar, Jan 20 2022
a(n) = Sum_{k=0..floor(log_2(n+1))} k^3 * A360189(n,k). - Alois P. Heinz, Mar 06 2023
Showing 1-3 of 3 results.