A231531 Imaginary part of Product_{k = 1..n} (k + i), i = sqrt(-1).
0, 1, 3, 10, 40, 190, 1050, 6620, 46800, 365300, 3103100, 28269800, 271627200, 2691559000, 26495469000, 238131478000, 1394099824000, -15194495654000, -936096296850000, -29697351895900000, -819329864480400000, -21683886333440500000, -570263312237604700000, -15145164178973569000000, -409583160925827252000000
Offset: 0
Examples
factim(5,1) = -90+190*i. Hence a(5) = 190. From _Peter Bala_, Jun 01 2023: (Start) Asymptotic linearity for the type 2 prime p = 5: the sequence of 5-adic valuations [ v_5(a(n)) : n = 1..100] = [0, 0, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 5, 5, 5, 6, 5, 6, 6, 7, 6, 6, 7, 7, 7, 8, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 11, 11, 11, 13, 11, 12, 12, 13, 12, 12, 13, 13, 13, 14, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 18, 19, 18, 18, 18, 19, 19, 19, 20, 19, 20, 21, 20, 20, 20, 21, 21, 21, 21, 21, 22, 22, 22, 22, 22, 24, 25, 24, 24, 24, 25, 25, 25]. Note that v_5(a(100)) = 25 = 100/(5 - 1), in line with Moll's conjecture 5.5 above. Oscillatory behavior for the type 3 prime p = 3: the sequence of 3-adic valuations [ v_3(a(n)) : n = 1..100] = [0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 3, 0, 0, 0, 3, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 3, 0, 0, 0, 3, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 4, 0, 0, 0, 4, 0, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0]. It appears that v_3(a(n)) = 0 unless n == 0 or 2 (mod 6). (End)
Links
- Stanislav Sykora, Table of n, a(n) for n = 0..440
- Victor H. Moll, An arithmetic conjecture on a sequence of arctangent sums, 2012, see f_n.
Crossrefs
Programs
-
Maple
seq(simplify(-sinh(Pi)*Im(I!*(n-I)!)/Pi), n=0..19); # Peter Luschny, Oct 23 2015
-
Mathematica
Table[Im[Pochhammer[1+I, n]], {n, 0, 20}] Table[Sum[(-1)^(n+k) StirlingS1[n+1, 2k], {k, 0, (n+1)/2}], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 22 2015 *)
-
PARI
Factim(nmax, m)={local(a, k); a=vector(nmax); a[1]=1+0*I; for (k=2, nmax, a[k]=a[k-1]*(k-1+m*I); ); return(a); } a = Factim(1000,1); imag(a)
-
PARI
t(n) = if( n<0, 0, n! * polcoeff(cos(log(1+x+x*O(x^n))), n)); vector(50, n, n--; (-1)^n*t(n+1)) \\ Altug Alkan, Oct 22 2015
-
Python
from sympy.functions.combinatorial.numbers import stirling def A231531(n): return sum(stirling(n+1,k<<1,kind=1)*(1 if k&1 else -1) for k in range((n+1>>1)+1)) # Chai Wah Wu, Feb 22 2024
Formula
From Vladimir Reshetnikov, Oct 22 2015: (Start)
a(n) = Im((1+i)_n) = -Re(Gamma(i)*Gamma(n+1-i))*sinh(Pi)/Pi, where (a)_n is the Pochhammer symbol, i=sqrt(-1).
a(n) = (-1)^n*A003703(n+1).
E.g.f.: sin(log(1-x))/(x-1). (End)
P-recursive: a(n) = (2*n - 1)*a(n-1) - (n^2 - 2*n + 2)*a(n-2) with a(0) = 0 and a(1) = 1. - Peter Bala, Jun 01 2023
Comments