cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A231551 Position of n in A231550.

Original entry on oeis.org

0, 1, 2, 3, 4, 7, 6, 5, 8, 15, 14, 9, 12, 11, 10, 13, 16, 31, 30, 17, 28, 19, 18, 29, 24, 23, 22, 25, 20, 27, 26, 21, 32, 63, 62, 33, 60, 35, 34, 61, 56, 39, 38, 57, 36, 59, 58, 37, 48, 47, 46, 49, 44, 51, 50, 45, 40, 55, 54, 41, 52, 43, 42, 53, 64, 127, 126, 65
Offset: 0

Views

Author

Alex Ratushnyak, Nov 10 2013

Keywords

Comments

This permutation transforms the enumeration system of positive irreducible fractions A002487/A002487' (Calkin-Wilf) into the enumeration system A020651/A020650, and A162911/A162912 (Drib) the enumeration system into A245327/A245326. - Yosu Yurramendi, Jun 16 2015

Crossrefs

Programs

  • Mathematica
    Join[{0, 1}, Table[d = Reverse@IntegerDigits[n, 2]; FromDigits[Reverse@Append[FoldList[BitXor, d[[1]], Most@Rest@d], d[[-1]]], 2], {n, 2, 67}]] (* Ivan Neretin, Dec 28 2016 *)
  • Python
    for n in range(99):
      bits = [0]*64
      orig = [0]*64
      l = int.bit_length(int(n))
      t = n
      for i in range(l):
        bits[i] = orig[i] = t&1
        t>>=1
      #for i in range(1, l-1):  bits[i] ^= orig[i-1]   # A231550
      for i in range(1, l-1):  bits[i] ^= bits[i-1]   # A231551
      #for i in range(l-1):  bits[i] ^= orig[i+1]      # A003188
      #for i in range(1, l):  bits[l-1-i] ^= bits[l-i]  # A006068
      t = 0
      for i in range(l):  t += bits[i]<
    				
  • R
    maxrow <- 8 # by choice
    b01 <- 0 # b01 is going to be A010059
    a <- 1
    for(m in 0:maxrow) for(k in 0:(2^m-1)){
       b01[2^(m+1)+    k] <-     b01[2^m+k]
         a[2^(m+1)+    k] <-       a[2^m+k]  + 2^(m+b01[2^(m+1)+    k])
       b01[2^(m+1)+2^m+k] <- 1 - b01[2^m+k]
         a[2^(m+1)+2^m+k] <-       a[2^m+k]  + 2^(m+b01[2^(m+1)+2^m+k])
    }
    (a <- c(0,a))
    # Yosu Yurramendi, Apr 10 2017
    
  • R
    maxblock <- 8 # by choice
    a <- 1:3
    for(n in 4:2^maxblock){
    ones <- which(as.integer(intToBits(n)) == 1)
    nbit <- as.integer(intToBits(n))[1:tail(ones, n = 1)]
    anbit <- nbit
    for(i in 2:(length(anbit) - 1))
       anbit[i] <- bitwXor(anbit[i], anbit[i-1])  # ?bitwXor
    a <- c(a, sum(anbit*2^(0:(length(anbit) - 1))))
    }
    (a <- c(0,a))
    # Yosu Yurramendi, Apr 25 2021

Formula

A231550(a(n)) = a(A231550(n)) = n.
a(n) = A258996(A284460(n)) = A284459(A092569(n)), n > 0. - Yosu Yurramendi, Apr 10 2017
a(n) = A054429(A153154(n)), n > 0. - Yosu Yurramendi, Oct 04 2021

A284460 Permutation of the positive integers: this permutation transforms the enumeration system of positive irreducible fractions A245327/A245328 into the enumeration system A002487/A002487' (Calkin-Wilf), and A020651/A020650 (Yu-Ting inverted) into A162911/A162912(Drib).

Original entry on oeis.org

1, 2, 3, 6, 5, 4, 7, 14, 13, 8, 11, 10, 9, 12, 15, 30, 29, 24, 27, 18, 17, 20, 23, 22, 21, 16, 19, 26, 25, 28, 31, 62, 61, 56, 59, 50, 49, 52, 55, 38, 37, 32, 35, 42, 41, 44, 47, 46, 45, 40, 43, 34, 33, 36, 39, 54, 53, 48, 51, 58, 57, 60, 63
Offset: 1

Author

Yosu Yurramendi, Mar 28 2017

Keywords

Comments

The inverse permutation is A284459.

Programs

  • R
    maxrow <- 4 # by choice
    a <- 1
    b01 <- 1
    for(m in 0:maxrow){
      b01 <- c(b01,rep(1,2^(m+1))); b01[(2^(m+1)+2^m-2^(m-1)):(2^(m+1)+2^m+2^(m-1)-1)] <- 0
      for(k in 0:(2^m-1)){
        a[2^(m+1) +       k] <- a[2^m + k] + 2^(m + b01[2^(m+1) +       k])
        a[2^(m+1) + 2^m + k] <- a[2^m + k] + 2^(m + b01[2^(m+1) + 2^m + k])
    }}
    a
    # Yosu Yurramendi, Mar 28 2017

Formula

a(n) = A231550(A258996(n)) = A092569(A231550(n)), n > 0 . - Yosu Yurramendi, Apr 10 2017

A153153 Permutation of natural numbers: A059893-conjugate of A003188.

Original entry on oeis.org

0, 1, 3, 2, 5, 6, 7, 4, 9, 10, 15, 12, 13, 14, 11, 8, 17, 18, 23, 20, 29, 30, 27, 24, 25, 26, 31, 28, 21, 22, 19, 16, 33, 34, 39, 36, 45, 46, 43, 40, 57, 58, 63, 60, 53, 54, 51, 48, 49, 50, 55, 52, 61, 62, 59, 56, 41, 42, 47, 44, 37, 38, 35, 32, 65, 66, 71, 68, 77, 78, 75, 72
Offset: 0

Author

Antti Karttunen, Dec 20 2008

Keywords

Crossrefs

Inverse: A153154. a(n) = A059893(A003188(A059893(n))).

Programs

  • R
    a <- 1
    maxlevel <- 5 # by choice
    #
    for(m in 0:maxlevel) for(k in 0:(2^m-1)){
      a[2^(m+1)+2*k  ] <- 2*a[2^(m+1)-1-k] + 1
      a[2^(m+1)+2*k+1] <- 2*a[2^m+k]
    }
    a <- c(0,a)
    # Yosu Yurramendi, Jan 25 2020

Formula

a(n) = A065190(A231550(n)). - Yosu Yurramendi, Jan 15 2020
a(1) = 1, a(2^(m+1)+2*k) = 2*a(2^(m+1)-1-k), a(2^(m+1)+2*k+1) = 2*a(2^m+k), m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Jan 25 2020
Showing 1-3 of 3 results.