cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A231570 Composite numbers n such that lambda(n) divides 3n-3, where lambda is the Carmichael lambda function (A002322).

Original entry on oeis.org

9, 21, 45, 63, 65, 105, 117, 133, 231, 273, 341, 481, 561, 585, 645, 651, 1001, 1105, 1281, 1365, 1541, 1729, 2465, 2821, 3201, 3605, 4033, 4371, 4641, 4921, 5461, 5565, 6305, 6533, 6601, 7107, 7161, 8321, 8911, 10585, 11041, 12545, 13333, 13833, 14981
Offset: 1

Views

Author

Keywords

Comments

Conjecture: the relative asymptotic density of the Carmichael numbers in this sequence exists, is positive and smaller than 1.

Crossrefs

Programs

  • Mathematica
    Select [1 + Range[100000], ! PrimeQ[#] && IntegerQ[3 (# -1)/ CarmichaelLambda[#]] &]
  • PARI
    is(n)=!isprime(n) && (3*n-3)%lcm(znstar(n)[2])==0 && n>1 \\ Charles R Greathouse IV, Nov 13 2013

A231572 Composite numbers n such that lambda(n) divides 5n-5, where lambda is the Carmichael lambda function (A002322).

Original entry on oeis.org

25, 33, 165, 217, 325, 385, 561, 793, 825, 1025, 1045, 1065, 1105, 1353, 1525, 1705, 1729, 2465, 2665, 2821, 3565, 4123, 4681, 5005, 5185, 5425, 6601, 6697, 8029, 8569, 8911, 9073, 10585, 11005, 12025, 12505, 12801, 13237, 13741, 14707, 14725, 14905, 15457
Offset: 1

Views

Author

Keywords

Comments

Contains the Carmichael numbers (A002997).
Conjecture: the relative asymptotic density of the Carmichael numbers in this sequence exists, is positive and smaller than 1.

Crossrefs

Programs

  • Mathematica
    Select [1 + Range[100000], ! PrimeQ[#] && IntegerQ[5 (# -1)/ CarmichaelLambda[#]] &]
  • PARI
    is(n)=!isprime(n) && (5*n-5)%lcm(znstar(n)[2])==0 && n>1 \\ Charles R Greathouse IV, Nov 13 2013

A231573 Composite numbers n such that lambda(n) divides 6n-6, where lambda is the Carmichael lambda function (A002322).

Original entry on oeis.org

4, 6, 8, 9, 12, 14, 15, 18, 21, 24, 28, 35, 36, 39, 42, 45, 56, 63, 65, 66, 72, 76, 84, 91, 105, 117, 126, 133, 153, 168, 186, 195, 231, 247, 252, 259, 273, 276, 315, 341, 344, 396, 435, 455, 481, 504, 532, 561, 585, 616, 645, 651, 671, 703, 804, 819, 861
Offset: 1

Views

Author

Keywords

Comments

Contains the Carmichael numbers, A231569 and A231570.
Conjecture: the relative asymptotic density of Carmichael numbers in this sequence exists, is positive and smaller than 1.

Crossrefs

Programs

  • Mathematica
    Select [1 + Range[100000], ! PrimeQ[#] && IntegerQ[6 (# -1)/ CarmichaelLambda[#]] &]
  • PARI
    is(n)=!isprime(n) && (6*n-6)%lcm(znstar(n)[2])==0 && n>1 \\ Charles R Greathouse IV, Nov 13 2013

A231571 Composite numbers n such that lambda(n) divides 4n-4, where lambda is the Carmichael lambda function (A002322).

Original entry on oeis.org

4, 6, 8, 10, 12, 15, 16, 20, 24, 28, 30, 40, 48, 52, 60, 66, 70, 80, 85, 91, 112, 120, 130, 176, 190, 208, 232, 240, 276, 280, 286, 364, 370, 435, 451, 496, 520, 532, 561, 616, 703, 742, 910, 946, 976, 1036, 1105, 1128, 1288, 1387, 1456, 1729, 1770, 1891
Offset: 1

Views

Author

Keywords

Comments

Contains the Carmichael numbers (A002997) and A231569.
Conjecture: the relative asymptotic density of the Carmichael numbers in this sequence exists, is positive and smaller than 1.

Crossrefs

Programs

  • Mathematica
    Select [1 + Range[100000], ! PrimeQ[#] && IntegerQ[4 (# -1)/ CarmichaelLambda[#]] &]
  • PARI
    is(n)=!isprime(n) && (4*n-4)%lcm(znstar(n)[2])==0 && n>1 \\ Charles R Greathouse IV, Nov 13 2013

A318555 "Strong impostors" not divisible by 4: Those numbers s !== 0 (mod 4) such that lambda(s) | 2(s-1), where lambda is the Carmichael function (A002322).

Original entry on oeis.org

6, 15, 66, 91, 435, 561, 703, 946, 1105, 1729, 1891, 2465, 2701, 2821, 2926, 3367, 5551, 6601, 8646, 8695, 8911, 10585, 11305, 12403, 13981, 15051, 15841, 16471, 18721, 23001, 26335, 29341, 30889, 38503, 39865, 41041, 46657, 49141, 52633, 53131, 62745, 63973, 68101, 75361, 76627, 76798, 79003, 88561, 88831, 91001
Offset: 1

Views

Author

Barry Fagin, Aug 28 2018

Keywords

Comments

Strong impostors not == 0 (mod 4) have the property that, even though they are composite, when paired with any odd prime r such that (s,r) = 1, they produce valid RSA key pairs. More specifically, if n=sr, all a in Z_n will be correctly encrypted and decrypted for any (e,d) key pair such that ed == 1 mod (s-1)(r-1). They include the Carmichael numbers and are squarefree. The set of their odd prime factors is always normal: If p_i and p_j are odd prime factors, no p_i == 1 mod p_j.

Crossrefs

Cf. A002997 (Carmichael numbers), A005117 (squarefree numbers).
Subsequence of A231569.

Programs

  • Mathematica
    Reap[For[s = 1, s < 10^5, s++, If[!Divisible[s, 4] && CompositeQ[s], If[ Divisible[2(s-1), CarmichaelLambda[s]], Print[s]; Sow[s]]]]][[2, 1]] (* Jean-François Alcover, Feb 18 2019 *)
  • PARI
    isok(s) = s>1 && s%4>0 && !isprime(s) && (2*s-2)%lcm(znstar(s)[2])==0; \\ Jinyuan Wang, Mar 01 2020
Showing 1-5 of 5 results.