A231609 Table whose n-th row consists of primes p such that p + 2n is the next prime, read by antidiagonals.
3, 7, 5, 23, 13, 11, 89, 31, 19, 17, 139, 359, 47, 37, 29, 199, 181, 389, 53, 43, 41, 113, 211, 241, 401, 61, 67, 59, 1831, 293, 467, 283, 449, 73, 79, 71, 523, 1933, 317, 509, 337, 479, 83, 97, 101, 887, 1069, 2113, 773, 619, 409, 491, 131, 103, 107
Offset: 1
Examples
The following sequences are read by antidiagonals { 3, 5, 11, 17, 29, 41, 59, 71, 101, 107, ...} { 7, 13, 19, 37, 43, 67, 79, 97, 103, 109, ...} { 23, 31, 47, 53, 61, 73, 83, 131, 151, 157, ...} { 89, 359, 389, 401, 449, 479, 491, 683, 701, 719, ...} { 139, 181, 241, 283, 337, 409, 421, 547, 577, 631, ...} { 199, 211, 467, 509, 619, 661, 797, 997, 1201, 1237, ...} { 113, 293, 317, 773, 839, 863, 953, 1409, 1583, 1847, ...} {1831, 1933, 2113, 2221, 2251, 2593, 2803, 3121, 3373, 3391, ...} { 523, 1069, 1259, 1381, 1759, 1913, 2161, 2503, 2861, 3803, ...} { 887, 1637, 3089, 3413, 3947, 5717, 5903, 5987, 6803, 7649, ...} ...
Links
- T. D. Noe, Rows n = 1..100 of triangle, flattened
Crossrefs
Programs
-
Mathematica
nn = 10; t = Table[{}, {nn}]; complete = 0; lastP = 3; While[complete < nn, p = NextPrime[lastP]; diff = p - lastP; If[diff <= 2*nn && Length[t[[diff/2]]] < nn - diff/2 + 1, AppendTo[t[[diff/2]], lastP]; If[Length[t[[diff/2]]] == nn - diff/2 + 1, complete++]]; lastP = p]; t2 = PadRight[t, {nn, nn}, 0]; Table[t2[[n-j+1, j]], {n, nn}, {j, n}]
Comments