cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A231690 Cardinalities of the sub-operad FF_6 of the operad MFF.

Original entry on oeis.org

1, 6, 56, 640, 8158, 111258, 1588544, 23446248, 354855218, 5477342222, 85893429256, 1364577254040, 21916000458014, 355251287893170, 5804407209709312, 95493879511032240, 1580592247322440642, 26301843121772151254, 439764358275666481496, 7384252698468635017936, 124469446338979722639294
Offset: 1

Views

Author

N. J. A. Sloane, Nov 14 2013

Keywords

Crossrefs

Programs

  • Mathematica
    InverseSeries[x(1 - 3x - x^2 + x^3)/(1 + 3x + x^2 - x^3) + O[x]^22] // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Oct 24 2018, from PARI *)
  • PARI
    N=22; x='x+O('x^N);
    Vec(serreverse(Ser(x*(1-3*x-x^2+x^3)/(1+3*x+x^2-x^3))))  \\ Gheorghe Coserea, Jan 13 2017

Formula

A(x) = serreverse(A213667(-x))(-x). - Gheorghe Coserea, Jan 13 2017

Extensions

Offset changed and more terms from Gheorghe Coserea, Jan 13 2017

A278458 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.

Original entry on oeis.org

1, 2, 2, 9, 15, 8, 64, 156, 144, 52, 625, 2050, 2675, 1730, 472, 7776, 32430, 55000, 50310, 25108, 5504, 117649, 599319, 1258775, 1484245, 1052184, 428036, 78416, 2097152, 12669496, 31902416, 46103680, 42064736, 24421096, 8389552, 1320064, 43046721, 301574340, 888996066, 1524644856, 1698413409, 1269814980, 625219644, 185935104, 25637824
Offset: 1

Views

Author

Gheorghe Coserea, Jan 15 2017

Keywords

Examples

			A(x;t) = x + (2*t+2)*x^2/2! + (9*t^2+15*t+8)*x^3/3! + (64*t^3+156*t^2+144*t+52)*x^4/4! + ...
Triangle starts:
n\k  [1]      [2]      [3]      [4]      [5]      [6]      [7]
[1]  1;
[2]  2,       2;
[3]  9,       15,      8;
[4]  64,      156,     144,     52;
[5]  625,     2050,    2675,    1730,    472;
[6]  7776,    32430,   55000,   50310,   25108,   5504;
[7]  117649,  599319,  1258775, 1484245, 1052184, 428036,  78416;
[8]  ...
		

Crossrefs

Column k=1 give A000169

Programs

  • Mathematica
    m = 10;
    (Reverse[CoefficientList[#, t]]& /@ CoefficientList[InverseSeries[Log[x + Exp[t Log[1+x]]] - (t-1) Log[1+x] - x + O[x]^m], x]) Range[0, m-1]! // Rest // Flatten (* Jean-François Alcover, Sep 28 2019 *)
  • PARI
    N=10; x = 'x + O('x^N); t='t;
    concat(apply(p->Vec(p), Vec(serlaplace(serreverse(log(x + exp(t*log(1+x))) - (t-1)*log(1+x) - x)))))

Formula

y(x;t) = Sum {n>=1} P_n(t)*x^n/n! satisfies x = log(y + exp(t*log(1+y))) - (t-1)*log(1+y) - y.
A006351(n) = P_n(0), A005172(n) = P_n(1), A231691(n) = P_n(2).
Showing 1-2 of 2 results.