A383995
Series expansion of the exponential generating function exp(ff6^!(x)) - 1 where ff6^!(x) = x * (1-3*x-x^2+x^3) / (1+3*x+x^2-x^3).
Original entry on oeis.org
0, 1, -11, 61, -215, -1559, 62941, -1371131, 26310481, -474554735, 7824076741, -98881279859, -176260664711, 87457412423161, -5077434546358355, 234510433823788501, -10016559114085864799, 413333665704129673249, -16704968283664639137899, 660340818239784197391325
Offset: 0
Cf.
A003725,
A097388,
A111884,
A112242,
A177885,
A318215,
A383989,
A383990,
A383991,
A383992,
A383993,
A383994.
-
nn = 19; f[x_] := Exp[x] - 1;
Range[0, nn]! * CoefficientList[Series[f[x*(1 - 3*x - x^2 + x^3)/(1 + 3*x + x^2 - x^3)], {x, 0, nn}], x]
A231691
Cardinalities of the symmetric operad of dotted red and white trees.
Original entry on oeis.org
1, 6, 74, 1476, 41032, 1464672, 63865328, 3290120832, 195537380704, 13169097667584, 991181618539136, 82450282595311104, 7511417235983147008, 743790032122343820288, 79541198937597284060672, 9136079502141558495310848, 1121720442822518015112749056, 146607501639123412303738884096, 20322509742114322789584125210624, 2978025324234142178848508363882496
Offset: 1
A(x) = x + 6*x^2/2! + 74*x^3/3! + 1476*x^4/4! + 41032*x^5/5! + ...
-
S:= series(RootOf(y=-x-ln((1+x)/(1+3*x+x^2)),x),y,21):
seq(coeff(S,y,n)*n!,n=1..21); # Robert Israel, Sep 27 2018
-
terms = 20; (CoefficientList[InverseSeries[Log[x^2 + 3x + 1] - Log[1+x] - x + O[x]^(terms+1)], x]*Range[0, terms]!) // Rest (* Jean-François Alcover, Sep 16 2018, after Gheorghe Coserea *)
-
N=21; x = 'x + O('x^N); Vec(serlaplace(serreverse(log(x^2+3*x+1) - log(1+x) - x))) \\ Gheorghe Coserea, Jan 18 2017
A278457
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
Original entry on oeis.org
1, 2, 2, 7, 11, 6, 30, 65, 59, 22, 143, 397, 492, 318, 90, 728, 2471, 3857, 3430, 1728, 394, 3876, 15572, 29255, 32728, 22886, 9461, 1806, 21318, 99009, 217323, 291456, 257001, 148626, 52133, 8558, 120175, 633765, 1591231, 2481597, 2622445, 1918665, 947740, 288812, 41586, 690690, 4078360, 11527318, 20467755, 25114375, 22043890, 13821764, 5964728, 1607198, 206098
Offset: 1
A(x;t) = x + (2*t+2)*x^2 + (7*t^2+11*t+6)*x^3 + (30*t^3+65*t^2+59*t+22)*x^4 + ...
Triangle starts:
n\k [1] [2] [3] [4] [5] [6] [7] [8]
[1] 1;
[2] 2, 2;
[3] 7, 11, 6;
[4] 30, 65, 59, 22;
[5] 143, 397, 492, 318, 90;
[6] 728, 2471, 3857, 3430, 1728, 394;
[7] 3876, 15572, 29255, 32728, 22886, 9461, 1806;
[8] 21318, 99009, 217323, 291456, 257001, 148626, 52133, 8558;
[9] ...
-
Reverse[CoefficientList[#, t]]& /@ CoefficientList[InverseSeries[x ((t - 1) x^3 + (t^2 - 2t - 1) x^2 - (2t - 1) x + 1)/((1 - t) x^3 + (3 - t) x^2 + 3x + 1) + O[x]^11], x] // Flatten (* Jean-François Alcover, Sep 28 2019 *)
-
N=11; x ='x + O('x^N);
concat(apply(p->Vec(p), Vec(serreverse(Ser(x*((t-1)*x^3 + (t^2-2*t-1)*x^2 - (2*t-1)*x+1)/((1-t)*x^3 + (3-t)*x^2 + 3*x + 1), 'x)))))
Showing 1-3 of 3 results.
Comments