A231693 Define a sequence of rationals by f(0)=0, thereafter f(n)=f(n-1)-1/n if that is >= 0, otherwise f(n)=f(n-1)+1/n; a(n) = denominator of f(n).
1, 1, 2, 6, 12, 60, 20, 140, 280, 2520, 2520, 27720, 27720, 360360, 360360, 360360, 720720, 12252240, 4084080, 77597520, 77597520, 11085360, 11085360, 254963280, 84987760, 424938800, 424938800, 11473347600, 80313433200, 2329089562800, 2329089562800, 72201776446800, 144403552893600, 144403552893600
Offset: 0
Examples
0, 1, 1/2, 1/6, 5/12, 13/60, 1/20, 27/140, 19/280, 451/2520, 199/2520, 4709/27720, ...
References
- David Wilson, Posting to Sequence Fans Mailing List, Nov 14 2013.
Links
- David W. Wilson, Table of n, a(n) for n = 0..200
Programs
-
Haskell
a231693 n = a231693_list !! n a231693_list = map denominator $ 0 : wilson 1 0 where wilson x y = y' : wilson (x + 1) y' where y' = y + (if y < 1 % x then 1 else -1) % x -- Reinhard Zumkeller, Nov 16 2013
-
Maple
f:=proc(n) option remember; if n=0 then 0 elif f(n-1) >= 1/n then f(n-1)-1/n else f(n-1)+1/n; fi; end;
-
Mathematica
Denominator[FoldList[# + (-1)^Boole[#*#2 >= 1]/#2 &, Range[0, 35]]] (* Paolo Xausa, Aug 16 2025 *)
-
PARI
s=0;vector(30,n,denominator(s-=(-1)^(n*s<1)/n)) \\ M. F. Hasler, Nov 15 2013
-
Python
from fractions import Fraction A231693 = [(f:=Fraction(0)).denominator] + [(f:=(f + (Fraction(1,i) if Fraction(1,i)>f else -Fraction(1,i)))).denominator for i in range(1, 34)] # Jwalin Bhatt, Apr 08 2025
Comments