cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A231692 Define a sequence of rationals by f(0)=0, thereafter f(n)=f(n-1)-1/n if that is >= 0, otherwise f(n)=f(n-1)+1/n; a(n) = numerator of f(n).

Original entry on oeis.org

0, 1, 1, 1, 5, 13, 1, 27, 19, 451, 199, 4709, 2399, 3467, 29207, 5183, 55411, 221267, 300649, 1628251, 5508127, 259001, 762881, 6460903, 5694791, 11476403, 27820203, 326206681, 5151783667, 69088293143, 146724611903, 2219373406193, 8951357840311, 4575492601111, 328329280711, 4454145077671
Offset: 0

Views

Author

N. J. A. Sloane, Nov 15 2013, Nov 16 2013

Keywords

Comments

It is conjectured that the terms of the {f(n)} sequence are distinct.
If that is true, then the {f(n)} sequence is a fractional analog of Recamán's sequence A005132.
The denominators of {f(n)} form A231693 (a non-monotonic sequence).
From Don Reble, Nov 16 2013: (Start)
Here is a proof that the f(n) are distinct: Suppose not. Then the difference between the terms (which is zero) is a number of the form +- 1/(a+1) +- 1/(a+2) +- 1/(a+3) +- ... +- 1/(a+n).
Consider any harmonic sum
S = +- 1/(a+1) +- 1/(a+2) +- 1/(a+3) +- ... +- 1/(a+n)
where one puts any sign on any term, and there is at least one term. Let G be the LCM of the denominator(s). Then for any denominator D, G/D is an integer, and G*S = sum(+- G/D_i) is an integer. Let E be the highest power of two that divides G. Then there is only one multiple of E among the denominators. (If there were two, they would be consecutive multiples of E, and one would be divisible by 2*E.) Call that denominator F. So (+- G/F) is an odd integer, and for all other denominators D, (+- G/D) is an even integer. Therefore G*S is odd, therefore not zero, so S is not zero. (End)

Examples

			0, 1, 1/2, 1/6, 5/12, 13/60, 1/20, 27/140, 19/280, 451/2520, 199/2520, 4709/27720, ...
		

References

  • David Wilson, Posting to Sequence Fans Mailing List, Nov 14 2013.

Crossrefs

Programs

  • Haskell
    a231692_list = map numerator $ 0 : wilson 1 0 where
       wilson x y = y' : wilson (x + 1) y'
                    where y' = y + (if y < 1 % x then 1 else -1) % x
    -- Reinhard Zumkeller, Nov 16 2013
  • Maple
    f:=proc(n) option remember;
    if n=0 then 0 elif
    f(n-1) >= 1/n then f(n-1)-1/n else f(n-1)+1/n; fi; end;
  • Mathematica
    Numerator[FoldList[# + (-1)^Boole[#*#2 >= 1]/#2 &, Range[0, 35]]] (* Paolo Xausa, Aug 16 2025 *)
  • PARI
    s=0;vector(30,n,numerator(s-=(-1)^(n*s<1)/n)) \\ - M. F. Hasler, Nov 15 2013
    

A232090 Minimal possible denominator for a sum of the form 1 +/- 1/2 +/- 1/3 +/- ... +/- 1/n.

Original entry on oeis.org

1, 2, 6, 12, 60, 20, 140, 280, 2520, 2520, 27720, 27720, 360360, 360360, 72072, 144144, 2450448, 272272, 5173168, 5173168, 739024, 739024, 16997552, 16997552, 424938800, 424938800, 11473347600, 11473347600, 332727080400, 332727080400
Offset: 1

Views

Author

M. F. Hasler, Nov 18 2013

Keywords

Comments

Differs from A203811 from a(18)=272272 on, and from A002805 and A231693 from a(15)=72072 on.

Crossrefs

Cf. A061195 (minimal possible positive numerator).

Programs

  • Mathematica
    nMax = 19; d = {0}; Table[d = Flatten[{d + 1/n, d - 1/n}]; Min[Denominator[d]], {n, nMax}] (* T. D. Noe, Nov 19 2013 *)
  • PARI
    for(n=0,19,m=(n+1)!;for(k=0,2^n-1,m=min(denominator(sum(j=2,n+1,(-1)^bittest(k,j-2)/j,1)),m));print1(m","))

Extensions

Terms a(21)-a(30) from David W. Wilson, Nov 19 2013

A386883 Define a sequence of rationals by f(0) = 0, thereafter f(n) = f(n-1) - 1/n if that is >= 0, otherwise f(n) = f(n-1) + 1/n; a(n) corresponds to the number of addition steps minus the number of subtraction steps involved in calculating f(n).

Original entry on oeis.org

0, 1, 0, -1, 0, -1, -2, -1, -2, -1, -2, -1, -2, -3, -2, -3, -2, -3, -2, -3, -2, -3, -2, -3, -2, -3, -2, -3, -2, -3, -2, -3, -2, -3, -4, -3, -4, -3, -4, -3, -4, -3, -4, -3, -4, -3, -4, -3, -4, -3, -4, -3, -4, -3, -4, -3, -4, -3, -4, -3, -4, -3, -4, -3, -4, -3
Offset: 0

Views

Author

Rémy Sigrist, Aug 06 2025

Keywords

Comments

This sequence is unbounded below.
By contradiction:
- let M be the minimum value of the sequence and a(n) = M be the first occurrence of M in the sequence,
- as an addition step is always followed by a subtraction step, and the value M can only be followed by M+1, a(n+2*k) = M and a(n+2*k+1) = M+1 for any k >= 0,
- for any m >= n, f(m) = f(n) + Sum_{k = n+1..m} (-1)^(k-n-1) / k,
- as the alternating harmonic series converges to log(2), the sequence f will have a positive limit, say L > 0,
- hence for some m0 >= 0, f(m) > L/2 for any m >= m0,
- let k be such that n+2*k >= m0 and 1/(n+2*k+1) < L/2: f(n+2*k) > L/2, so f(n+2*k+1) = f(n+2*k) - 1/(n+2*k+1), and a(n+2*k+1) = a(n+2*k)-1 = M-1, a contradiction.

Examples

			Sequence begins:
  n   a(n)  f(n)-f(n-1)
  --  ----  -----------
   0     0  N/A
   1     1  +1
   2     0  -1/2
   3    -1  -1/3
   4     0  +1/4
   5    -1  -1/5
   6    -2  -1/6
   7    -1  +1/7
   8    -2  -1/8
   9    -1  +1/9
  10    -2  -1/10
  11    -1  +1/11
  12    -2  -1/12
  13    -3  -1/13
  14    -2  +1/14
  15    -3  -1/15
		

Crossrefs

Programs

  • Mathematica
    Module[{f = 0, a = 0}, Array[If[f >= 1/#, f -= 1/#; a--, f += 1/#; a++] &, 100]] (* Paolo Xausa, Aug 25 2025 *)
  • PARI
    { print1(0); f = 0; a = 0; for (n = 1, 65, if (f >= 1/n, f -= 1/n; a--, f += 1/n; a++); print1 (", "a);); }

Formula

a(n) = Sum_{k = 1..n} sign(A231692(n)/A231693(n) - A231692(n-1)/A231693(n-1)).
Showing 1-3 of 3 results.