A231772 Smallest positive number which has exactly n primitive roots, or 0 if no such number exists.
8, 1, 5, 0, 11, 0, 19, 0, 17, 0, 23, 0, 29, 0, 0, 0, 41, 0, 81, 0, 67, 0, 47, 0, 53, 0, 0, 0, 59, 0, 0, 0, 97, 0, 0, 0, 109, 0, 0, 0, 83, 0, 0, 0, 139, 0, 0, 0, 113, 0, 0, 0, 107, 0, 163, 0, 0, 0, 0, 0, 199, 0, 0, 0, 137, 0, 0, 0, 0, 0, 0, 0, 149, 0, 0, 0, 0, 0
Offset: 0
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Primitive Root
Programs
-
Mathematica
nn = 100; t = Join[{1}, Table[p = PrimitiveRoot[n]; If[IntegerQ[p], EulerPhi[EulerPhi[n]], 0], {n, 2, 2*nn}]]; Table[s = Position[t, n, 1, 1]; If[s == {}, 0, s[[1, 1]]], {n, 0, nn}] (* T. D. Noe, Nov 14 2013 *)
-
PARI
r=77; print1(8, ", ", 1, ", "); for(n=2, r, m=0; for(c=2*n+1, n^2+1, if(n%2==1, break); e=eulerphi(c); if(e==lcm(znstar(c)[2])&&eulerphi(e)==n, m=1; print1(c, ", "); break)); if(m==0, print1(0, ", ")));
Comments