A231787 Count of the first 10^n primes containing at least one 1's digit.
4, 46, 468, 5325, 65575, 737451, 7948534, 83168848, 844383541, 8470537436, 85169381579
Offset: 1
Examples
a(1)=4 because there are 4 primes not greater than 29 (the 10th prime) that contain a 1's digit. Namely: 11, 13, 17, 19.
Programs
-
Mathematica
cnt = 0; Table[Do[p = Prime[k]; If[MemberQ[IntegerDigits[p], 1], cnt++], {k, 10^(n - 1) + 1, 10^n}]; cnt, {n, 5}] (* T. D. Noe, Nov 13 2013 *) Module[{nn=7,p},p=Table[If[DigitCount[p,10,1]>0,1,0],{p,Prime[ Range[ 10^nn]]}];Table[Total[Take[p,10^k]],{k,nn}]] (* The program generates the first 7 terms of the sequence; to generate more, increase the value of nn but the program may take a long time to run. *) (* Harvey P. Dale, Sep 27 2019 *)
Formula
a(n) ~ 10^n. - Charles R Greathouse IV, May 21 2014